证明线段相等的方法
(一)常用轨迹中:
①两平行线间的距离处处相等。
②线段中垂线上任一点到线段两端点的距离相等。
③角平分线上任一点到角两边的距离相等。
④若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等(图1)。
(二)三角形中:
①同一三角形中,等角对等边。(等腰三角形两腰相等、等边三角形三边相等)
②任意三角形的外心到三顶点的距离相等。
③任意三角形的内心到三边的距离相等。
④等腰三角形顶角的平分线(或底边上的高、中线)平分底边。
⑤直角三角形中,斜边的中点到直角顶点的距离相等。
⑥有一角为60°的等腰三角形是等边三角形。
⑦过三角形一边的中点与另一边平行的直线,必平分第三边(图2)。
⑧同底或等底的三角形,若面积相等,则高也相等。同高或等高的三角形,若面积相等,则底也相等(图3)。
(三)四边形中:
①平行四边形对边相等,对角线相互平分。
②矩形对角线相等,且其的交点到四顶点的距离相等。
③菱形中四边相等。
④等腰梯形两腰相等、两对角线相等。
⑤过梯形一腰的中点与底平行的直线,必平分另一腰(图4)。
(四)正多边形中:
①正多边形的各边相等。且边长an = 2Rsin (180°/ n)
②正多边形的中心到各顶点的距离(外接圆半径R )相等、各边的距离(边心距rn ) 相等。
且rn = Rcos (180°/ n)
(五)圆中:
①同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。
②同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。
③任意圆中,任一弦总被与它垂直的半径或直径平分。
④自圆外一点所作圆的两切线长相等。
⑤两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。
⑥两相交圆的公共弦总被连心线垂直平分(图5)。
⑦两外切圆的一条外公切线与内公切线的交点到三切点的距离相等(图6)。
⑧两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分(图7)。
(六)全等形中:
①全等形中,一切对应线段(对应的边、高、中线、外接圆半径、内切圆半径……)都相等。
(七)线段运算:
①对应相等线段的和相等;对应相等线段的差相等。
②对应相等线段乘以的相等倍数所得的积相等;对应相等线段除以的相等倍数所得的商相等。
③两线段的长具有相同的数学解析式,或二解析式相减为零,或相除为1,则此二线段相等。
因篇幅问题不能全部显示,请点此查看更多更全内容