搜索
您的当前位置:首页正文

纳米科技

来源:小奈知识网
PublishedonWeb08/17/2010

PreparationandPeriodicEmissionofSuperlatticeCdS/CdS:SnS2Microwires

GuozhangDai,†BingsuoZou,*,†andZhonglinWang‡SchoolofMaterialsScienceandEngineering,BeijingInstituteofTechnology,Beijing100081,China,andSchoolof

MaterialsScienceandEngineering,GeorgiaInstituteofTechnology,Atlanta,Georgia30332-0245

ReceivedMay4,2010;E-mail:zoubs@bit.edu.cn

Abstract:Semiconductorsuperlatticemicro-/nanowirescouldgreatlyincreasetheversatilityandpowerofmodulatingelectronic(orexcitonic,photonic)transport,opticalproperties.Inthiscommunication,wereportgrowthofasemiconductorCdS/CdS:SnS2superlatticemicrowirethroughacoevaporationtechniquewithmicroenvironmentalcontrol.Suchanovelsuperlatticemi-crowirecanmodulatetheexcitonandphotonstoshowmultipeakemissionswithperiodsinawidespectralrange,whichariseinthe1-dphotoncrystalandconfinedexcitonemission.Thissystemcanbewidelyusedinproducingmulticoloremissions,low-thresholdlasing,studylight-matterinteraction,slowlightengi-neering,andweaknonlinearopticaldevices.

One-dimensional(1D)nanostructureswithmodulatedcompositionsandmicrostructureshavegainedatremendousamountofattentioninthepastfewyearsduetotheirfascinatingchemistryandsize-,shape-,andmaterial-dependentproperties.Among1Dsegmentedstructures,semiconductorsuperlatticenanowireswithaperiodiccompositionmodulationalongtheaxialdirectionhaverecentlybecomeofparticularinterest.Thisisdueinparttotheexcitingelectronicandopticalapplicationsofnew1Dnanophotonicbuildingblocks.1-4Forexample,the“excitoniclattice”canprovidecoherentinteractionoflocalexcitonsandmodulatelightpropagationwhichopensuppossibilitiesforstudyingnewstatesformedwhenexcitonsinteractwiththeiremittedphotons.5Todate,severalwell-developedchemicalvapordepositiontechniqueshavesuccessfullybeenusedtosynthesizethesuperlatticestructures.6-8Inthesestudies,thevapor-liquid-solid(VLS)growthmechanism9,10takeseffectinsuperlatticenanowiregrowthviaalteringthereactionatmosphereperiodically.Othersyntheticmethodssuchasthetemplate-basedelectrochemicalmethod,11-13partialcationexchangetechniques,14andatomiclayerdeposition15havealsobeenreported.Allthesetechniquescantunetheelectronicbandlocationoftheproducts,butnottomodulatelightpropagation.Therefore,developingmethodstoobtainbuildingblocksofsuperlatticenanowireswithtunableinterfaces,size,andcompositioninapredictablemannerandmodulatebothelectronsandphotonsinsituisveryimportantfortherealizationofmultifunctionalnano-andmicrometerscalephotonicdevices.

Inthiscommunication,wereportthefabricationofCdS/CdS:SnS2superlatticewiresthroughacoevaporationtechniquewithlocalenvironmentalcontrol.Suchanovelsuperlatticewirewithathicknessof400nmto5µmcanmodulateexcitonemissionandphotonpropagationwithspectralperiodicalmultipeaks,whichmaybeusedinproducingmulticoloremissionsandlow-thresholdlasing,studyinglight-matterinteraction,slowlightengineering,andweakopticalnonlinearities.

†‡BeijingGeorgiaInstituteInstituteofofTechnology.Technology.

121749

J.AM.CHEM.SOC.2010,132,12174–12175

1Dsuperlatticewireswereproducedbyapreciselycontrolledthermalevaporation.AmixtureofCdS(0.1g,AlfaAesar,99.995%purity)andSnO2(0.01g,99.5%purity)wasplacedinthecenterofasinglezonetubefurnacewhichwasevacuatedfor2htopurgeoxygeninthetube.AtreatedSi(100)substratewasplaced8cmawayfromthesourcepowdersandalongthedownstreamsideofflowingAr(90%)andH2(10%).Typically,thesourcesitewasheatedtoabout980°Catarateofabout120°C/min.Duringthegrowthprocess,the40sccmmixtureofcarriergaswasinjectedintothetube.Then,thesuperlatticemicrowireswithvariedsegmentlengthscanbeachievedbychangingthedepositiontime,location,andsomeotherfactors.

Figure1.(a)NormalizedX-raydiffractionpatternsand(b)SEMimage

oftheas-grownsamplepreparedbyevaporatingCdSandSnO2mixedpowders.Insetsin(b)arethemagnificationmorphologyimagesofatypicalsample,endingwithamicrosphereandahexagonalsolidwireattwosides,respectively.(candd)Opticalimagesatdifferentmagnificationsofperiodicalternatingmicrowiredispersiononacoppergrid,showingasuperlatticestructure.Insertedimagein(d)showstransmissionconfocalmode.

Theproductcoveringanapproximately10mmregionontheendoftheSisubstrate(wherethetemperaturewasabout650°Cduringreaction)wascollected,andthenitsX-raypowderdiffraction(XRD)pattern(Figure1a)wasobtained.Theresultsshowthattheas-grownproductiscomposedoftwocrystallinephases,ahexagonal(wurtzite)formofCdS(JCPDS:2-549)andhexagonalSnS2(JCPDS:23-677).Nocharacteristicpeaksfromotherimpurities,suchasCdO,SnO,andSnO2,weredetectedintheXRDspectrum.Figure1bpresentsanSEMimageofthesamplewhichshowstheirdiameterrangingfrom400nmto2µm.Mostofthewireswerecappedwithamicrosphereontheirtops(leftinsetinFigure1b),indicatingalikelyVLSprocessfortheformationofthesewires.Theinsertedtoprightimageshowsthetypicalhexagonalfacetendofawire.Far-fieldopticalimagesoftheproductsatdifferentmagnificationsareshowninFigure1cand1d,respectively.Itcanbeclearlyseenthattheproductsarelongmicrowireswithregionsofperiodicandalternatingindicesofrefraction,thatis,microwiresuperlattices.TheinsertedimageinFigure1dobtainedintransmissionmodefurtherconfirmsasuperlatticestructure.InFigure

10.1021/ja10379632010AmericanChemicalSociety

S1,thepositiondependentTEMimageandrelatedEDSprofilesindicatethelongsectionintheperiodicwireismainlycomposedofCdandS,whiletheshortsectionismainlymadeupofCd,Sn,andS.Combinedwiththeanalysisofthemicro-RamanspectruminFigureS2,itcanbeconcludedthatthelongsectionisCdSandtheshortsectionisthecompositeCdS:SnS2.PossiblegrowthprocessesforthissuperlatticewireareschematicallyshowninFiguresS3.

Figure2.Far-fieldPLimagesofanexcitedsamplewithdifferentreactiontimes:(a)20min;(b)30min.Insetsin(a)and(b)arecorrespondingopticalimages.(c)Schematicrepresentationofemissionprocessofthe1Dsuperlatticewire,λexc)488nm.(d)Micro-PLspectrumoftheperiodicCdS/CdS:SnS2superlatticewirein(a).

Asawidebandgapsemiconductor,CdSwithnear-cylindricalgeometryandlargedielectricconstantsexhibitsgoodwaveguiding.16,17However,whathappensifCdSwasseparatedbyaninactiveSnS2layerina1Dsuperlatticewire?Figure2exhibitstheemissionbehaviorofanindividualwirefromtheCdS/CdS:SnS2superlatticewireswhichwascharacterizedbyaconfocalopticalsystemusinganAr-ionlaserwithanexcitationwavelengthof488nmatroomtemperature.Figure2ashowsthemicrophotoluminescence(PL)imagewithwell-definedemissionperiodicityforawireobtainedunderconstanttemperaturegrowthfor20min.Theinsetisthecorrespondingfar-fieldopticalimage.Inadditiontoabrightfaculaontheexcitationcenter,severalperiodicgreenspotsseparatedbydarkregionscanbeseen;eachspacingbetweentwobrightspotsisabout7.3µm,whichisequaltothelengthoftheCdSsegment.Thatis,thepositionsofthepointsofluminescencearethepreciselocationsofCdS:SnS2junctions.Incontrasttothepreviousreports,whichshowsasingleemissionpeakfromthelowbandgapcomponentlocationsinaSi/Ge6andGaAs/GaP8superlatticenanowire,amultiple-peakPLspectrumisobtainedfromasuperlatticewirehere.

Inourwires,CdShasadirectbandgapof2.4eVandrefractiveindexof2.4.TheSnS2hasasmallerindirectbandgapofabout2.0eVandrefractiveindexof3-3.3.TheCdSsegmentsinthesuper-latticesmayformmanyopticalmicrocavitiesinqueuewhichconfineandtransportphotons,whileSnS2withalargerrefractionindexintheshortCdS:SnS2sectionmightworkasbothreflectionendfacesandemissioncenter.Theperiodicbrightemissionsariseexactlyfromtheinterferenceofcoherentlyscatteredlightwavesontheendfacesofthemicrocativities(FigureS6)andSnS2emission.Figure2cand2dillustratetheemissionprofileofasuperlatticewireandcorrespondingmicro-PLspectrum,whichexhibitsastrongCdSbandedgeemissionat∼509nmandmultipeakrangeof525-650nm.ThemultipeaksarenotFabry-Perotmodes,sincethecalculatedmodespacingsuggestsa2.9-3.4µmcavityandthetruedimensionis7.3µm.Themodeslikelyoriginatefromthelongitudinalphotonpropagationselectioninthecoupledopticalmicrocavities.18ImagesoftheselectedwaveguidingareshowninFigureS6.

COMMUNICATIONS

Asingle-microwirePLstudywasusedtoassessthedegreeofcontrolinoursuperlatticewiregrowth.Itwasfoundthatsystematicvariationsinthegrowthtimeleadtomicrowiresuperlatticeswithwell-definedchangesinperiodicity.Figure2bshowsthePLimageoftheproductwithagrowthtimeofabout30min.Itsseparationdistancebetweenbrightemissionspotsisabout15µm,whichislargerthandoublethesizeofthewireshowninFigure2a.Moreover,partiallyhollowcavitystructures,asreportedinref19,canbefoundiftheconstant-temperaturegrowthtimeislongerthan60minwithhighSnconcentration.TheconstanttemperatureheatingtimeiscrucialforformationorcontrollingthelengthofaCdSmicrocavityinthissuperlatticestructuregrowthasshowninFigureS7.Inadditiontothegrowthtimeandsourcetemperature,othermicroenvironmentalparametersincludingheatingrates,carriergasflowrates,andtheweightratioofthetwosourceprecursorsalsoinfluencethis1Dsuperlatticewiregrowth.Arelativelyhighheatingrateandstrongcarriergasflowproducemoresourcevapor,generallyleadingtomorewireswiththickerbasesandtaperedends,butnotsuperlattices.TheuniformSn-core/CdS-shellmicrowirescanformwhentheweightratioofSnO2/CdSisincreasedto1/5-3/5.

Insummary,wereportedthefabricationofaCdS/CdS:SnS2superlatticemicrowirethroughacoevaporationtechniquewithmi-croenvironmentalcontrol.Tuningthegrowthtimeandsourcetem-peraturecanmodifythedomainperiodicityofthesuperlatticemicrowires.Thenovelmultipeakemissionwithcontrollableperiodswasobservedforthefirsttime.Theemissionprofileswereproducedbythecombinedcontributionsof1-dphotoniccrystalandperiodicalexcitonconfinementwhichcouldprovideanewmaterialsplatformforawiderangeofapplicationsfromopticalmicrobarcodes,low-thresholdlasers,one-dimensionalwaveguidesto1Dphotoniccrystals,andexciton-lightinteraction,allofwhicharecurrentlybeingpursued.Acknowledgment.TheauthorsthanktheNSFCofChina(Nos.90606001,20873039)andChinaPostdoctoralScienceFoundationfoundedprojectforfinancialsupport.

SupportingInformationAvailable:ThepositiondependentTEMimageandrelatedEDS,micro-Ramanspectrum,schematicofgrowthprocess,typicalopticalimagesandmappingimages.ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.acs.org.References

(1)(2)Lieber,Li,C.M.NanoLett.2002(3)(4)Aneta,Y.;Yan,J.Qian,M.;Romaneh,F.;Xiang,J.;J.;Lieber,,2,81.

C.M.Mater.Today2006,9,18.(5)Goldberg,R.X.;Gargas,D.;Yang,Gamini,P.U.D.S.;NatureFrancis,Photon.P.Z.Small20092007,,3,722.(6)Tokranov,D.;Wu,V.;Yakimov,Deych,L.M.;I.;Oktyabrsky,Lisyansky,A.S.A.;Nat.Shi,3,569.

PhotonicsZ.;Menon,2009V.M.;(7)Gudiksen,Y.;Fan,Nature2002M.R.;,415S.;Yang,,Lauhon,P.Nano617.

L.J.;Lett.,3,662.Wang,2002J.;,Smith,2,83.

D.C.;Lieber,C.M.(8)Bjork,Magnusson,M.T.;Ohlsson,B.J.;Sass,T.;Persson,A.L.;Thelander,Lett.2002,2M.,87.

H.;Deppert,K.;Wallenberg,L.R.;Samuelson,L.NanoC.;(10)(9)Wagner,Clark,R.S.;Ellis,W.C.Appl.(11)E.Dou,C.NanoT.E.;Lett.Nimmatoori,P.;Lew,Phys.K.K.;Lett.Pan,1964L.;Redwing,,4,89.

J.M.;Dickey,(12)Xue,X.2005,F.127H.;C.;Li,G.2008H.;,Lei,4,1246.

H.C.NanoLett.2008,5,1286.

,15348.

Fei,G.T.;Wu,B.;Cui,P.;Zhang,L.D.J.Am.Chem.Soc.(13)Yoo,(14)N.B.Y.;Xiao,F.;Bozhilov,Robinson,V.AdV.K.N.;Herman,J.;Ryan,M.A.;Myung,(15)L.R.Mater.D.;Sadtler,2007,19B.;,Demchenko,296.

Solanki,W.;Alivisatos,(16)3864.

R.;Huo,J.;A.Freeouf,P.SciencD.O.;Erdonmez,C.K.;Wang,J.2007L.;Miner,,317,355.

B.Appl.Phys.Lett.2002,81,Pan,2005,A.1,L.;980.

Liu,D.;Liu,R.B.;Wang,F.F.;Zhu,X.;Zou,B.S.Small(17)(18)Barrelet,(19)

Notomi,Hu,M.;C.J.;Greytak,A.B.;Lieber,C.M.NanoLett.2004,4,1981.X.L.;J.Sekiguchi,Q.;Bando,Kuramochi,T.Y.Appl.S.;E.;Zhan,Tanabe,Phys.J.Lett.H.;T.2005Liao,Nat.Photonics,87M.,113107.

Y.;Golberg,2008,2D.;,274.Yuan,JA1037963

J.AM.CHEM.SOC.

9

VOL.132,NO.35,201012175

因篇幅问题不能全部显示,请点此查看更多更全内容

Top