搜索
您的当前位置:首页正文

Thermodynamic properties of the SO(5) theory for the antiferromagnetism and d-wave supercon

来源:小奈知识网
9991 nJu 61 ]noc-rpsu.tam-dnoc[ 1v7326099/tam-dnco:viXraThermodynamicpropertiesoftheSO(5)theoryfortheantiferromagnetismandd-wave

superconductivity:aMonteCarlostudy

XiaoHu

NationalResearchInstituteforMetals,Tsukuba305-0047,Japan

(submittedtoPhys.Rev.BonFebruary1,2008)

ThermodynamicpropertiesoftheSO(5)theoryunifyingtheantiferromagnetism(AF)andthed-wavesuperconductivity(SC)areexploredbymeansofMonteCarlosimulationsonaclassicalmodelhamiltonian.ThepresentapproachtakesintoaccountthermalfluctuationsbothintherotationofSO(5)superspinsbetweentheAFandSCsubspaces,andinthephasevariablesofSCorderparameters.Temperaturevs.g-fieldphasediagramsfornullexternalmagneticfieldarepresented,wherethegfieldisconjugatewiththequadraticorderparametersandbreakstheSO(5)symmetry.Thenormal(N)/AFandN/SCphaseboundaries,bothassociatedwithsecond-orderphasetransitions,mergetangentiallyatthebicriticalpointintothefirst-orderAF/SCphaseboundary.HysteresisphenomenonisobservedattheAF/SCphasetransition,andthereforethepresentstudysuggeststheexistenceofaphase-separationregioninthephasediagram.EnhancementofAFcorrelationsisobservedabovetheSCcriticaltemperaturenearthebicriticalpointinsystemswithAFcouplingsstrongerthanSCones.Itsrelationwiththespin-gapphenomenonisaddressed.TheSO(5)theoryinanexternalmagneticfieldisalsoinvestigated,andthefollowingpropertiesareclarified:AtsufficientlylargegfieldstheSCorderisestablishedthroughafirst-orderfreezingtransitionfromtheflux-lineliquidintotheflux-linelattice.Short-rangeAFfluctuationsarelargeratcoresoffluxlinesthanelsewhere,anddecreasecontinuouslytozerowithincreasinggfield.Atintermediategfields,theflux-linelatticeoflong-rangeSCorderandthelong-rangeAFordercoexist.SuperlatticespotssurroundingthestrongAFBraggpeaksatQ=(±π,±π)areobservedinthesimulatedstructurefactor,andareidentifiedwiththemodulationbythetriangularflux-linelatticeofSC.TheAFphaseboundaryassociatedwiththecontinuousonsetoflong-rangeAForderdropssharplytothegaxisfromafinitetemperatureinthetemperaturevs.g-fieldphasediagram.

PACSnumbers:74.25.Dw,05.50.+q,74.20.-z,74.25.Ha

1

I.INTRODUCTION

High-Tcsuperconductivity(SC)incuprates[1]isachievedbyholedopingfromtheinsulatingstateofantiferromag-netism(AF).TheAFandSCphasesareproximateeachotherintemperaturevs.hole-doping-ratephasediagrams.EnhancementofAFcorrelationsisobservedabovetheSCtransitiontemperatureintheunderdopedregion[2].Aclearsignalfromtheseexperimentalfactsistheimportanceoftheinter-relationshipbetweenthesetwoverydifferentandevenexpelling,atafirstglance,properties.Toexplaintheoreticallythecomplexphasediagramsofthehigh-TcSCisstillverychallengingforthecondensedmatterphysics.Thisproblemhasbeenapproachedusingmicroscopicmodels,suchasHubbardhamiltonianandthesimplifiedt−Jhamiltonian[3,4].IthasbeentriedtoderivemicroscopicallytheattractiveforcenecessaryforCooper-pairformationfromthemagneticinteractions,andtoconstructthephasediagramwiththeAFandSCphasessidebyside.Uptodate,however,thereisnowellacceptedmicroscopictheorywhichcancountforthemostimportantfeaturesofthehigh-TcSCbothqualitativelyandquantitatively.

IntheSO(5)theorythisproblemisapproachedinanotherway[5,6]:Thelong-rangeSCandAFordersarepresumedasthetwopossiblelong-rangeordersinpuresystems.ThethreecomponentsoftheAForderparameterandtherealandimaginarypartsoftheSCorderparametercomposeafive-componentsuperspinofSO(5)symmetry.AtlowtemperaturestheSO(5)symmetryisbrokenintotwosubspaces,theSO(3)oneassociatedwithAF,andtheU(1)oneassociatedwithSC.Thedestinationofthebrokensymmetryiscontrolledbythedopingrate,orthechemicalpotentialofholes.Therefore,thedopingrateplaystheroleofSO(5)-symmetrybreakingfield.MuchinteresthasbeenstimulatedbytheproposaloftheSO(5)theory,andconsiderableprogressesinexploringthistheoryhavebeenachieved[7–15].SincethesuperspinvectorintheSO(5)theoryisoffivedimensions,threeforAFandtwoforSC,entropyeffectsonthecompetitionbetweenthesetwolong-rangeordersarehighlynontrivial.Thermalfluctuationsareverycrucialindeterminingphasediagrams[13].Therefore,investigationoftheSO(5)theoryatfinitetemperaturesisessentialforacomprehensiveunderstandingofthetheory.Ultimatelyoneshouldcomparethepredictionsbythetheorywithphasediagramsobservedexperimentally.TheSO(5)theoryalsoraisesinterestsinthepointofviewofphasetransitionsandcriticalphenomena.TorevealthethermodynamicpropertiesoftheSO(5)theoryistheobjectiveofthepresentstudy.Anotherimportantissueisthecompetitionbetweenthelong-rangeSCorderinthepresenceofanexternalmagneticfield,realizedintheflux-linelattice(FLL),andthelong-rangeAForder.Sincemanyinterestingmagnetic-fieldresponseshavebeenclarifiedinthelong-rangeAFandSCordersseparately,theproximityoftheminhigh-Tccupratesisverylikelytoproducemoresophisticatedphenomena.Actually,itissuggestedthatvorticesinducedbyanexternalmagneticfieldinhigh-TcsuperconductorsmaypossessAFcores[5].Toexplorethevortexstatesinhigh-TccupratesintheschemeofSO(5)theoryisalsoveryimportant.

Inordertoachievetheabovepurposes,MonteCarlosimulationsonaclassicalmodelhamiltonianinthree-dimensional(3D)spaceareperformed[13].ThepresentapproachtakesintoaccountthermalfluctuationsbothintherotationofSO(5)superspinsbetweentheAFandSCsubspaces,andinthephasevariablesofSCorderparameters.Theremainderofthispaperisorganizedasfollows:ThehamiltonianispresentedinSec.II,withdescriptionson

2

technicaldetailsofsimulation.InSec.III,simulationresultsforthenullexternalmagneticfieldarepresented.TherearetheAF,AFandSCphase-separation,andSCphasesinthephasediagrams.Thespin-gapphenomenonisalsoaddressed.SectionIVisdevotedtorevealtheeffectsofanexternalmagneticfieldintheSO(5)theory.Coexistencebetweenthelong-rangeAForderandtheFLLoflong-rangeSCorderisobserved.VortexcoresarefoundoflargerAFcomponentsthanelsewhere.SummaryisgiveninSec.V.

II.HAMILTONIANANDSIMULATIONTECHNIQUES

Thehamiltonianinthepresentstudyisgivenby

H=−

󰀁

SCJi,jti

󰀂i,j󰀁

·tj+

󰀂i,j󰀁

󰀁

AF

Ji,jsi

·sj+g

󰀁

i

s2i,

(1)

definedonthesimplecubiclattice.Thevectort,oftwocomponentsandcouplingferromagneticallywithnearestneighbors,isforthed-waveSCorderparameter;thevectors,ofthreecomponentsandwithAFcouplingbetweennearestneighbors,isfortheAForderparameter.TheinterplaybetweentheSCandAForderparametersisintroducedbytheSO(5)constraintonthesuperspin:

2

s2i+ti=1.

(2)

ThegfactorisafieldbreakingtheSO(5)symmetryintotheU(1)andSO(3)subgroups,andisproportionaltothedopingrateinaloosesense[5].

Thefollowingnotesontheabovehamiltonianseemappropriateatthisstage.First,theabovehamiltoniancanbeconsideredastheGinzburg-LandaudescriptionoftheSO(5)theory.BothoftheAFandSCorderparameters,sandt,aredefinedinascalelargerthantheatomicone,butmuchsmallerthanthemacroscopicone.Inthissensetheyshouldbecalledasthelocalorderparameters.Theconstraint(2)doesnotimplytheexistenceoflong-rangeorderinthemacroscopicscale.Thelong-rangeorderparameterfortheAFcomponentisthestaggeredmagnetization,andthatfortheSCcomponentisthehelicitymodulus[16].Second,althoughnoquantumeffectisincludedexplicitlyinhamiltonian(1),thecompetitionbetweenthetwodifferentlong-rangeordersistakenintoaccountsufficiently.Therefore,theprofound,nontrivialthermodynamicpropertiesoftheSO(5)theorycanbecaptured.Third,thermalfluctuationsinphasevariablesofSCorderparameters,whichareespeciallyimportantforunderdopedhigh-Tccuprates[17],aretakenintoaccountbythefirsttermintheabovehamiltonian,andtreatedusingtheMonteCarlotechnique.Furthermore,thishamiltonianiseasilydevelopedsoastoincorporateanexternalmagneticfieldforthestudyofvortexstates.Fourth,thesuperspinamplitudeisfixedtounityintheabovehamiltonian.Theonsetofsuperspinamplitudeitselfuponcoolingcanalsobetakenintoaccountinthemean-fieldfashion,andisexpectedtocorrespondtotheso-calledpseudo-gapphenomenon[5].Finally,onlythesimplestsymmetry-breakingfieldgassociatedwiththequadratictermsoforderparametersisincludedinthehamiltonian.Othersymmetry-breakingfieldsappearwhenhighordersoftheorderparametersareconsidered[5,12].Althoughanargumentonmagnitudesofthesefieldsis

3

absentrightnow,itisreasonablyexpectedthatthemostimportantfeaturesofthebreakingofSO(5)symmetryintotheAFandSCsubspacesarecapturedbythegfieldin(1).

Atypicalsimulationprocessstartsfromarandomconfigurationofsuperspinsatasufficientlyhightemperature.Thesystemisthencooledgradually.Theequilibriumstateatagiventemperatureisgeneratedusingtypically50,000MCsweepsofupdatefromthestateofaslightlyhighertemperature.Ineachsweepofupdate,candidatevectorsaregeneratedrandomlyonthefive-dimensionalunitsphereforsuperspinsonallsitesinthesystem,andaresubjecttothestandardMetropolisalgorithmtodetermineiftheyareacceptedforthenextconfiguration[18].Afterthisequilibriationprocess,statisticsonphysicalquantitiesisperformedover100,000MCsweeps.Aroundtransitiontemperatures,morethan106MCsweepsarespentinordertomakesureofsufficientequilibriationandstatistics.ThesystemsizeforsimulationsinnullexternalmagneticfieldisL3=403,withperiodicboundaryconditionsinallcrystaldirections.AstheSO(5)superspinsarecontinuousinfivedimensions,andthesystemisofthreedimensionsincrystalspace,athoroughanalysisoffinite-sizeeffectsonsimulationresults,whichisimportantfordeterminingtherelevantcriticalandbicriticalexponentsinhighprecisions,isextremelytimeconsuming.Onlyforseveralchosenparametersets,largersystemshavebeensimulatedinordertomakesurethatthemainpropertiesderivedfromthepresentsimulationsdonotsufferfromfinite-sizeeffects.Systematicerrors(finite-sizeeffects)arethereforenotestimatedfordatapresentedinthispaper.Statisticalerrorsarecomparabletosizesofmarksinfiguresasfarasnot

AF

specified.TheAFcouplingintheabplaneJab≡Jistakenastheenergyunit,andtemperatureismeasuredby

J/kBthroughoutthepresentpaper.

III.PHASEDIAGRAMSANDCORRELATIONFUNCTIONSFORH=0

SCSCAFAF

A.Isotropicsystem:Jab=Jc=Jc=Jab≡J

Figure1isthetemperaturevs.g-fieldphasediagramofthesystemwiththesameAFandSCcouplinginallcrystaldirections.BoththeN/AFandN/SCphasetransitionsareofsecondorder,inthe3DHeisenbergandXYuniversalityclass,respectively.Thetwophaseboundariesmergetangentiallyatthebicriticalpoint[gb,Tb]=[0,0.85J/kB][19].Forg=gbandT>Tb,theAFandSCcorrelationlengthsforthetwo-pointcorrelationfunctionsareequaltoeachother,andisotropicinallcrystaldirections;theweightsofAFandSCcomponentsare3/5and2/5,proportionaltothenumberofdegreesoffreedom.AwayfromtheSO(5)-symmetricline,positive(negative)gfieldssuppressAF(SC)correlationsatalltemperatures.

SCSCAFB.Anisotropicsystem:Jab=10Jc=Jc=J

SCAFSC

Thetemperaturevs.g-fieldphasediagramofthesystemofcouplingsJab=Jc=JandJc=0.1Jispresented

inFig.2.Thebicriticalpointisat[gb,Tb]=[1.18J,0.64J/kB].Theequal-weightpartitionofthesuperspinatg=gb

4

observedintheisotropicsystemisbroken.Nevertheless,asindicatedintheinsetofFig.2,intheabplanetheAFcorrelationlengthisequaltotheSCcorrelationlengthwhenthegfieldisfixedatthebicriticalvalue.Thisagreementisnottrivialincontrastwiththeisotropicsystem.TheSCcorrelationlengthinthecaxisismuchsmallerthantheothercorrelationlengths.

SCSCAF

C.Stronglyanisotropicsystem:10Jab=100Jc=100Jc=J

Inordertosimulaterealhigh-Tccuprates,theAFexchangecouplingshouldbetakenmuchstrongerthantheeffectiveSCcoupling,andbothAFandSCcouplingsaremuchweakerinthecaxis.ThetemperaturedependenceoftheAFstaggeredmagnetizationandthehelicitymodulusoftheSCcomponents[20]areshowninFig.3forthe

SCSCAF

systemofcouplingsJab=0.1JandJc=Jc=0.01Jatthesymmetrybreakingfieldg=1.96J.Sincethehelicity

modulusisproportionaltothesuperfluiddensity[16],itisclearthatthelong-rangeSCorderisestablishedbelowthecriticaltemperatureTc≃0.115J/kB.Asshowninthesamefigure,theAFcorrelationlengthintheabplane,

SCξabistakenatthetemperatureTsg≃0.15J/kB.TheweightofAFcomponents,󰀍s2󰀌,decreasesmonotonicallyinthe

AF

,increasesatfirstastemperatureisreduced,andthenissuppressedastemperatureapproachesTc.Themaximalξab

AFwholecoolingprocessandshowsasharpdeclineamongTsgandTc.Therefore,theenhancementofξababoveTsgis

AF

belowTsgisbecauseofthelossoftheclearlytheresultofreductionofthermalfluctuations;thesuppressionofξab

AForderinitscompetitionwiththeSCorder.ThispeculiarbehavioroccursbecausetheAFcouplingintheabplaneoverwhelmsovertheSCone,whiletheSCgroundstateisestablishedbythelargegfield.TemperaturedependenceoftheinternalenergyandthespecificheatforthissystemaredepictedinFig.4.NofeaturecanbefoundaroundTsginthesetwothermodynamicquantities.Therefore,theonlyphasetransitiontakesplaceatTc,andTsgcorresponds

SC

merelytoacrossover.TheSCcorrelationlengthintheabplane,ξab,divergeswhentemperatureapproachesTcin

Fig.3,asusuallyinathermodynamicsecond-orderphasetransition.

Itisfoundexperimentallythatthespin-latticerelaxationrateassumesitsmaximumatatemperaturewellabovetheSCcriticalpoint[2].Thepresentsimulationresultsindicatethatthisspin-gapphenomenoncanbeexplainedbythecompetitionamongthelong-rangeSCandAForders,andthermalfluctuations.SincetheenhancementofAFcorrelationsabovetheSCcriticalpointisobservedinthestronglyanisotropicsystemofFig.3,butnotinisotropicandslightlyanisotropicsystemsofFigs.1,and2,itbecomesclearthatinordertoobservethespin-gapbehavior,thesystemshouldhaveSCcouplingsmuchweakerthanAFones,asinrealhigh-Tccuprates.

Figure5isthetemperaturevs.g-fieldphasediagramofthesamecouplingsforFigs.3and4.Thebicriticalpointisat[gb,Tb]=[1.93J,0.12J/kB].Thelatentheatassociatedwiththefirst-ordertransitionbetweentheAFandSCphasesisapproximatelyQ≃0.05J,anddecreasestozeroasthebicriticalpointisapproached.Thespin-gaplikephenomenonisobservedintheregiongb2.2J,AFcorrelationsaresuppressedbySCcomponentsatalltemperatures.Theexperimentalfactthatspin-gapbehaviorsareobservedonlyintheunderdopedregionofhigh-Tccupratesmaybeexplainedbythepresentsimulationresult.Theratiobetweenthespin-gaptemperatureand

5

theSCcriticalpointisTsg/Tc≃1.6atg=2J,whichcountswelltheexperimentalobservation[2].

InFig.5,thespin-gaptemperatureTsgdecreasesasthebicriticalpointisapproached.Thismightseemcuriousatafirstglance,sinceitisclearfromhamiltonian(1)thatthelargerthegfieldthesmallertheAFcomponents.ShowninFigs.6(A)and(B)arethetemperaturedependenceoftheAFcorrelationlengthandthestaggeredsusceptibilityatseveralgfields.Althoughbothofthemaremonotonicallysuppressedbyincreasinggfieldwhentemperatureisfixed,thetemperaturewheretheytakemaxima,Tsg,increaseswiththegfield,asclearlyseeninFigs.6.Itisnotedthatthespin-gaptemperatureincreaseswithdecreasingdopingrateinexperiments.Thepresenttheorythereforeconflictswithexperimentalobservationsinthisaspect.

TheSCcorrelationsaresuppressedinthenormalstateabovetheAFphaseboundaryinthepresentsystem.Inthissense,thereisnocounterpartofthespin-gaptemperatureaboveN´eelpoints.However,itisinterestingtoobserveinFig.7thatforthegfieldinacertainregionbelowthebicriticalvalue,theSCweight,󰀍t2󰀌,takesmaximumatatemperatureabovethecorrespondingN´eelpoint.ThetemperatureassociatedwiththemaximalSCweight,denotedbyTpinFig.5,maybeidentifiedwiththepairingtemperature[5].Thereisnofeatureintheinternalenergyandthespecificheataroundthiscrossovertemperature.

IV.PHASEDIAGRAMANDVORTEXSTATESFORH>HC1

A.Modelhamiltonianandphasediagram

Anexternalmagneticfieldpenetratesintoatype-IIsuperconductorviathinfluxlinesassociatedwithfluxquantaforHlargerthanthelowercriticalfieldHc1.SCisbrokenalongthefluxlines.High-Tcsuperconductorsareextremelytype-IIwithverylargeGinzburg-Landaunumbersκ∼100.Researchofthevortexstatesinhigh-TcSChasbeengrowingintoavividfieldofcondensedmatterphysicsandstatistics.ThemostimportantfeatureofthevortexstatesisthattheAbrikosovFLLmeltsintoFLliquidviaafirst-orderphasetransition[21,22,20].

IntheschemeoftheSO(5)theory,thefreeenergyofavortexstatecanbereducedbyrotatingthesuperspinsfromtheSCsubspaceintotheAFsubspaceattheflux-linecores[5].ThepossibilityofAFcoresoffluxlinesintheSO(5)theorywasfirstaddressedbyArovasetal.[8].Recently,Alamaetal.discussedtheκdependenceofthecorestate[15].Inthesestudies,theAbrikosovmean-fieldtheorywasdevelopedsoastoincorporatetheAFcomponents.However,theAbrikosovmean-fieldtheoryforthevortexstatesisnotappropriateforthehigh-TcSCsinceitonlytakesintoaccounttheamplitudeofSCorderparameter,andcannottreatthermalfluctuationsinthephasevariables,whichareessentiallyimportantfordeterminingthephasediagramofthevortexstatesinhigh-TcSC[20].

ThehamiltonianfortheSO(5)theoryinthepresenceofanexternalmagneticfieldmaybegivenasfollowing[13]:H=−

󰀁

SC

Jij|ti||tj|cos(ϕi−ϕj−Aij)+

󰀂i,j󰀁󰀂i,j󰀁

󰀁

AF

Jijsi·sj−

󰀁

i

H·si+g

󰀁

i

s2i,

Aij=

vorticesislargerthantheSCcorrelationlengthandmuchsmallerthanthepenetrationdepthintheabplane,aconditionsatisfiedinlargeportionofH−Tphasediagramsofhigh-Tcsuperconductors.TheJosephsoncouplingshouldalsobedominantovertheelectromagneticcoupling.Thefirsttermintheabovehamiltonian,knownasthefullyfrustrated3DXYmodel,hasbeenusedsuccessfullyforexplainingmanyimportantthermodynamicpropertiesofthevortexstatesinhigh-TcSC[20,23].

Inordertosimplifythesituation,thecaseofanexternalmagneticfieldparalleltothecaxisisaddressedin

2

thepresentpaper[23].ThevectorpotentialisgivenbyA=(−yB/2,xB/2,0)withB=fφ0/lab.Here,φ0is

thefluxquantum,labtheunitlengthintheabplane,andftheaveragenumberoffluxineachsquareunitcellintheabplane.Thedatashowninthefollowingareforf=1/25,correspondingtotheinter-vortexdistanceof

󰀃√

3lab/dv=

almostverticalpartofAFphaseboundaryisinvestigatedbytuningthegfieldatafixedtemperature,inadditiontothecoolingprocessmentionedinSec.II.TheturningpointontheN/AFphaseboundaryinFig.8andthetricriticalpointinRef.[13]areatthesametemperature.

B.AFvortexcores

ThevortexcoresintheSCphaseoftheSO(5)theoryaredifferentfromthosewithoutAFcompetitionstudieduptodate.ThestructurefactorsS(qab,z=0)forvortices,s2,sab,andscforg=1.5JintheFLLphasearedisplayedinFigs.10.TheBraggpeaksinthestructurefactorFig.10(A)forthevortexcorrelationsarefromthetriangularFLL.OnealsofindsBraggpeaksinstructurefactorFig.10(B)fortheAFamplitudesatthesamewavenumbersofFig.10(A).ThiscoincidenceindicatesclearlythatcoresoffluxlinesareoflargerAFweightsthanelsewhere.Theg-fielddependenceoftheBragg-spotheightforAFweightsintheFLLphase,suchasthoseinFig.10(B),isinvestigatedwhentemperatureisfixed.AsshowninFig.11forT=0.3J/kB,S(qab=qmax,z=0)decayswithincreasinggfieldinapowerlawS≃p/gqwithp=0.8±0.05andq=3±0.1.ThehaloesatthewavenumbersQ=(±π,±π)inthestructurefactorsforsabandscinFigs.10(C)and(D)correspondtoshort-rangeAFfluctuations.TheweakspotatQ=(0,0)inFig.10(D)isfromthesmallferromagneticcomponentscinducedbytheexternalmagneticfield.ThestructurefactorsS(qab,z=0)intheAFandFLLcoexistencephaseforvortices,s2,sab,andscaredisplayedinFigs.12.FromthestructurefactorsFigs.12(A)and(B)forvorticesandAFamplitudes,itisclearthatAFcomponentsareenhancedincoresoffluxlines,asintheFLLphase.InstructurefactorsFigs.12(C)and(D)forsabandsc,therearestrongBraggpeaksatQ=(±π,±π)associatedwiththelong-rangeAForder.SatellitespotsareobservedaroundthemainBraggpeaksinFigs.12(C)and(D).ThesesatellitespotsareeasilyidentifiedwiththoseinFigs.12(A)and(B).Therefore,intheAFandFLLcoexistencephase,thephaseofthelong-rangeAForderispreservedincoresoffluxlines.

V.SUMMARY

ThermodynamicpropertiesoftheSO(5)theoryareinvestigatedusingMonteCarlosimulationsonamodelhamil-tonianwhichcountsthermalfluctuationsbothintherotationsofsuperspinsbetweentheSCandAFsubspaces,andinthephasevariablesoftheSCorderparameters.Thelatterfactorisessentiallyimportantforexplainingthermo-dynamicphasetransitionsassociatedwiththeonsetoflong-rangeSCorderinhigh-Tccupratesinnullandfiniteexternalmagneticfields.Therefore,thepresentapproachissuperiortoAbrikosov-typemean-fieldtreatmentsoftheSO(5)theory,inwhichthermalfluctuationsinthephasesofSCorderparametersareneglected.

Fornullexternalmagneticfield,thereisabicriticalpointinthetemperaturevs.g-fieldphasediagram,atwhichthesecond-orderN/AFandN/SCphaseboundariesmergetangentiallyintothefirst-orderAF/SCphaseboundary.Hysteresisphenomenonisobservedatthefirst-orderAF/SCphasetransition,whichmaysuggestaphase-separation

8

regioninthephasediagram.

InsystemswithmuchstrongerAFcouplingsthanSConeswhiletheSCgroundstateisachievedbygfieldslargerthanthebicriticalvalue,AFcorrelationsareenhancedatacrossovertemperatureabovetheSCcriticalpoint.TheoriginofthisenhancementinAFcorrelationsisclarifiedtobethecompetitionamongthelong-rangeAFandSCordersandthermalfluctuations.Whenthegfieldbecomestoolarge,thiscrossoverfadesawaysinceAFcorrelationsaresuppressedatalltemperaturesbythelargeSCcomponent.Theseresultsareconsistentwiththespin-gapphenomenonobservedexperimentallyinthefollowingaspects:First,realcupratesareveryanisotropicintheAFandSCcouplingsJAF∼0.1eVandJSC∼0.01eV;Second,thespin-gapphenomenonhasbeenobservedexperimentallyonlyintheunderdopedregion.Incontrastwithexperimentalobservations,however,thespin-gaptemperaturedecreasesasthebicriticalpointisapproachedfromtheSCside.Nearthebicriticalpoint,thereisacrossovertemperatureabovetheN´eeltemperaturewheretheweightofSCcomponentstakesmaximum.

TheSO(5)theoryinanexternalmagneticfieldisalsoinvestigated.Thelong-rangeSCorderisestablishedthroughafirst-orderfreezingtransitionfromtheFLliquidintotheFLL,whiletheonsetofthelong-rangeAForderisassociatedwithasecond-orderphasetransition.Thesetwophaseboundariescrosseachother,andthusproducearegioninthephasediagramwherethetwolong-rangeorderscoexist.IntheFLLphase,onlyshort-rangeAFfluctuationsareenhancedatcoresoffluxlines.1Dlong-rangeAForderalongthefluxlinecannotberealizedbecauseofstrongthermalfluctuations.Inthecoexistencephase,superlatticespotssurroundingthestrongAFBraggpeaksatQ=(±π,±π)areobservedinthesimulatedstructurefactor,andareidentifiedwiththemodulationbythetriangularflux-linelatticeofSC.Thissimulationresultcanbecheckedbytheneutronscatteringtechnique.

Acknowledgements

TheauthorwouldliketothankS.-C.Zhang,T.Koyama,andY.K.BangforstimulatingconversationsontheSO(5)theory.M.Tachikiisverygratefulfordrawingauthor’sattentiontovortexstatesinhigh-Tcsuperconductivityandcontinuousencouragement.HeappreciatesS.Miyashita,N.Akaiwa,M.Itakura,andY.NonomuraforhelpfuldiscussionsontechnicalpointsofMCsimulation.ThepresentsimulationsareperformedontheNumericalMaterialsSimulator(SX-4)ofNationalResearchInstituteforMetals(NRIM),Japan.

9

[20]X.Hu,S.Miyashita,andM.Tachiki,Phys.Rev.Lett.79,3498(1997);Phys.Rev.B58,3438(1998);referencestherein.[21]G.Blatteretal,Rev.Mod.Phys.66,1125(1994).

[22]G.W.CrabtreeandD.R.Nelson,PhysicsToday45,39(1997).[23]X.HuandM.Tachiki,Phys.Rev.Lett.80,4044(1998).

[24]ThisobservationisdifferentfromthatreportedinRef.[13],wherethereisatricriticalpointontheN/AFphaseboundary

at[gt,Tt]=[0.40J,0.59J/kB];thereisaregionatg>gtwheretheN/AFphasetransitionisoffirstorder.Thisdiscrepancycomesfromthedifferentwaysofgenerationofsuperspins[18].

11

FigureCaptions

Fig.1:Temperaturevs.g-fieldphasediagramofthesystemwithisotropicAFandSCcouplings.Thebicriticalpointisat[gb,Tb]=[0,0.85J/kB].

SCAFSC

Fig.2:Temperaturevs.g-fieldphasediagramofthesystemwiththecouplingsJab=Jc=J,andJc=0.1J.

Thebicriticalpointisat[gb,Tb]=[1.18J,0.64J/kB].Inset:temperaturedependenceoftheAFandSCcorrelationlengthsintheabplaneatg=gb.

Fig.3:TemperaturedependenceoftheAFandSCorderparameters,correlationlengths,andtheweightofAF

SCSCAFcomponentsatg=1.96JinthesystemwithcouplingsJab=0.1JandJc=Jc=0.01J.Here,TcistheSC

transitionpoint,andTsgisthespin-gaptemperature.

Fig.4:TemperaturedependenceoftheinternalenergyandthespecificheatpersiteforthesamesysteminFig.3.Fig.5:Temperaturevs.g-fieldphasediagramforthesamecouplingsinFig.3.Thebicriticalpointisat[gb,Tb]=[1.93J,0.12J/kB].Thespin-gaptemperatureTsgandpairingtemperatureTpfadeawayaroundg=2.2Jandg=1.5Jrespectively.

Fig.6:TemperaturedependenceoftheAFcorrelationlengthintheabplane(A)andthestaggeredsusceptibility(B)atseveraltypicalgfields.Maximaareassumedatthespin-gaptemperaturesTsgforg>gb=1.93J.

Fig.7:TemperaturedependenceoftheSCweightataseriesofgfields.MaximaareassumedatthepairingtemperaturesTpfor1.5JAFSCSC

=0.1J.=JandJc=JcFig.8:Temperaturevs.g-fieldphasediagramofthesystemwiththecouplingsJab

Thefluxdensityisgivenbyf=1/25,andtheZeemanfieldisH=0.1J.

Fig.9:Temperaturedependenceofthehelicitymodulusalongthecaxis,thestaggeredmagnetization,andthespecificheatpersiteinthesystemofthesamecouplingsofFig.8atg=1.1J.

Fig.10:StructurefactorsS(qab,z=0)forvortices(A),s2(B),sab(C),andsc(D)intheFLLphaseinFig.8.Fig.11:g-fielddependenceoftheBragg-spotheightfortheAFweightsatT=0.3J/kB.

Fig.12:StructurefactorsS(qab,z=0)forvortices(A),s2(B),sab(C),andsc(D)intheAFandFLLcoexistencephaseinFig.8.

12

1.15

TcTN1.1

1.05

NT[J/kB]1

0.95

bAFSC0.9

0.85

0.8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

g[J]

Fig.1 by Xiao HU

1

N0.8

ξab10bAFξSCabξAFabg=gb0.6

T[J/kB]86SCTcTNTd0.4

420.2

00.6Tb0.91.2TuT[J/kB]00

0.5

1

1.5

2

g[J]

1

ξSCab0.8

ξAFab10

8

Υab[J], mstag, Tsg0.6

Υabmstag6

ξab0.44

0.22

Tc00

0.1

0.2

0.3

0.4

00.5

T[J/kB]

Fig.3 by Xiao HU

0.65

4

0.4

e3

C[kB]e[J]0.2

Tc0

C2

Tsg-0.2

0

0.1

0.2

0.3

0.4

1

00.5

T[J/kB]

Fig.4 by Xiao HU

0.5

TTNducsgp0.4

N0.3

TTTTT[J/kB]0.2

AFb0.1

SC01

1.5

2

2.5

3

g[J]

Fig.5 by Xiao HU

12

Tsg9

g=1.92Jg=1.94Jg=1.96Jg=2.00JξAFab6

3

00

0.1

0.2

0.3

0.4

T[J/kB]

Fig.6(A) by Xiao HU

120

Tsg100

g=1.92Jg=1.94Jg=1.96Jg=2.00J80

χstag60

40

20

00

0.1

0.2

0.3

0.4

T[J/kB]

Fig.6(B) by Xiao HU

1

30.8

1.942.20.6

1.921.90.4

1.81.6 Tp0.2

g=1 J00

0.1

0.2

0.3

0.4

0.5

T[J/kB]

Fig.7 by Xiao HU

1

TNTm0.8

0.6

NAFT[J/kB]0.4

coexistence0.2

FLL00.5

11.52

g[J]

Fig.8 by Xiao HU

1

Υcmstag0.8

c3.5

3

2.5

Υc[J/Γ2], mstag0.6

2

C[kB]0.4

1.5

1

0.2

TmTN0.5

00

0.2

0.4

0.6

0.8

1

0

T[J/kB]

Fig.9 by Xiao HU

0.12

0.1

S(qab=qmax,z=0)0.08

0.06

0.04

0.02

01

2

3

4

5

6

7

8

g[J]

Fig.11 by Xiao HU

因篇幅问题不能全部显示,请点此查看更多更全内容

Top