MonikaSesterandClausBrenner
InstituteofCartographyandGeoinformatics,UniversityofHannover,Appelstr.9a,30167Hannover,Germany
monika.sester@ikg.uni-hannover.de,claus.brenner@ikg.uni-hannover.de
1Introduction
Smallmobiledevicesarebecomingmoreandmoreimportantforthevisual-izationofspatialinformation.Thistendencyisontheonehanddrivenbytheavailabilityofsuchsmalldeviceswithdisplays(e.g.mobilephones,PDA’s),aswellasbyagrowingnumberofpopularapplications,namelyLocationBasedServices(LBS)ingeneralandnavigationinparticular.
However,thesesmalldevicesalsohavelimitations:firstofall,thecom-putingandstoragecapabilitiesarelimited,leadingtothesituationthathugedatasetsorcomplicatedcalculationscannotbeloadedorrunonthedevices,respectively.Furthermore,thedisplaysarequitesmallandofrelativelylowresolutionsothatthevisualizationisnotcomparabletoamappresentation.Inordertostillbeabletoemploythisnewtechnologyformobilenav-igation,thefollowingdemandscanbeformulated:firstly,spatialdatasetsindifferentresolutionsorlevelsofdetailhavetobemadeavailableforthemobileuserinordertoallowforaflexiblezoominginandoutforgettingbothdetailandoverviewinformation.Secondly,thisinformationhastobetransmittedtotheuserfromaservertakingthepossiblylimitedbandwidthofthecommunicationchannelintoaccount.
Inthepaperasolutionispresentedthatallowsforaprogressivetransmis-sionofspatialdatatoasmallmobiledevice,startingwithcoarseoverviewin-formationandprogressivelystreamingmoredetailedinformationtotheclient.Thisinformationwillbeinterpretedbytheclientandanimatedinawaytosimulateacontinuousgeneralizationfromcoarsetofineandviceversa.Aprototypehasbeendevelopedtoillustratethefunctionalityandevaluatetheresults.
Thepaperisstructuredasfollows:afterabriefreviewofrelatedwork,asetofelementarygeneralizationoperations(EGO’s)isdefined,whichallowsforthemodificationofspatialobjects.Basedonthiselementaryvocabulary,twogeneralizationapplicationsaredescribed:generalizationofbuildinggroundplansandtypificationofbuildings.Thelastsectiondescribestheclient-server
2MonikaSesterandClausBrenner
architecture,aswellasanextensiontograduallyanimatethechangesinordermakethediscretechangeslessvisible.Asummaryandoutlookconcludesthepaper.
2RelatedWork
Inordertoprovideadequateinformationtoauser,ithastobeadaptedtothepersonalsituation,thedeviceused,thetasktobesolved,etc.(seee.g.[Nivala,Sarjakoski,Jakobsson&Kaasinen2003,Reichenbacher2004]).Onemajorcomponentistheadaptiontothelevelofdetailoftheinfor-mation.Incartography,thederivationofinformationindifferentlevelsofdetailisbeingachievedusinggeneralizationoperations[Hake,Gru¨nreich&Meng2002],whichtraditionallyhavebeenappliedbyhumancartogra-phers.Over40yearsofresearchintheautomationofgeneralizationpro-cesseshaveleadtoaseriesofalgorithmsspecifiedfordedicatedpurposes,e.g.linegeneralization[Douglas&Peucker1973],areaaggregation,build-ingsimplification,typification[Regnauld1996,Sester2004]ordisplacement[Højholt1998,Harrie1999,Sester2000].Inrecentyears,theresearchhasfocusedontheintegrationofdifferentgeneralizationalgorithmsbymod-ellingtherelativedependenciesbetweentheoperationsandthespatialcon-textoftheobjects(seee.g.[Lamy,Ruas,Demazeau,Jackson,Mackaness&Weibel1999]).Inthecontextofmobileapplications,acombinationofrely-ingonpre-computedgeneralizationlevelsintermsofanMRDBandon-linegeneralizationusingweb-technologyhasbeenproposed(e.g.[Sarjakoski,Sar-jakoski,Lehto,Sester,Illert,Nissen,Rystedt&Ruotsalainen2002])
Progressivelytransmittingspatialinformationviaalimitedbandwidthhasbeenimplementedforimageformatse.g.intheGIF-Format.Bertolotto&Egenhofer[1999]proposedtoalsouseitforvectordata.vanKreveld[2001]presentedconceptsforthecontinuousvisualizationofspatialinformationinordertoreducethepoppingeffectwhendiscretechangesinthegeometryappear.Inordertorepresentdifferentlevelsofdetailofvectorgeometry,hierarchicalschemescanbeapplied.AnexampleistheGAP-treeforthecodingofareapartitioningindifferentlevelsofdetail([vanOosterom1995]).TheBLG(binarylinegeneralization)treehierarchicallydecomposesalineusinge.g.theDouglas-Peukeralgorithm.Inmeshsimplificationusedforthegeneralizationofsurfaces,therearemethodsthatanimatesmoothchanges,e.g.byanimatingtheinsertionorremovalofnodesinatriangularnetwork[Hoppe1998].
3ElementaryGeneralizationOperations
Theconceptofourideasisexplainedusingtheexampleofthesimplificationofbuildinggroundplans.Theycan,however,beexpandedtoothergeneral-izationoperations,whichwillbeshownlater.
ContinuousGeneralizationforVisualizationonSmallMobileDevices3
3.1TheGeneralizationChain
SimilartotheideasintroducedbyHoppe[1998]fortriangulatedmeshes,wedefineforapolygonPconsistingofnverticesamaximalrepresentationPn≡P,consistingofalloriginalvertices,andaminimalrepresentationPm,withm≤nvertices.Theminimalrepresentationistheonewhichisstillsensiblefromacartographicviewpoint,forexamplearectangle,m=4,ortheemptypolygon.
Whenapolygonisgeneralizedduringpre-processing,onestartsfrompoly-gonPn,successivelysimplifyingitsrepresentationusinggeneralizationoper-ations,finallyyieldingpolygonPm.Assumethatkgeneralizationstepsareinvolved(eachleadingtooneormoreremovedpolygonvertices),andthenumberofpolygonverticesarenumberedi0=n,i1,...,ik=m,thenasequenceofgeneralizedpolygons
P≡Pn≡Pi0−→g0Pi1−→g1...−→gk−1Pik≡Pm
isobtained,wheregjdenotesthej-thgeneralizationoperation.Everygener-alizationstepgjistiedtoacertainvalueofacontrolparameterεj,whichrelatestothedisplayscaleandcanbeforexamplethelengthoftheshort-estedgeinthepolygon.Sincegeneralizationproceedsusingincreasingedgelengths,thesequenceofεjismonotonicallyincreasing.Asafirstconsequenceofthis,onecanpre-computeandrecordalloperationsgj,inordertoderivequicklyanydesiredgeneralizationlevelεofpolygonPbytheexecutionofallgeneralizationoperationsg0,...,gj,whereε0,...,εj≤εandεj+1>ε.
However,itisobviousthatformostapplications,theinverseoperations−1
gjaremoreinteresting,producingamoredetailedpolygonfromageneral-izedone.Thus,wehavethesequence
Pm≡Pik−→g−1Pik−1−→g−1...−→g−1Pi0≡Pn,
k−1
k−2
0
whereagainonecandecideuptowhichpointthepolygonmodificationshouldbecarriedout,characterizedbythecorrespondingparameterε.Thisway,theinversegeneralizationchaincanbeusedforprogressivelytransmittinginformationoveralimitedbandwidthchannelbytransmittingPmfollowedbyasufficientnumberofinversegeneralizationoperations.
3.2ElementaryGeneralizationOperationsandSimpleOperationsWecandefineasetofelementarygeneralizationoperations(EGO’s)suchthateverygeneralizationchainwillbemadeupofacombinationofEGO’s.EGO’sareintendedtobe‘meaningful’operationssuchas‘removeanextru-sion’.EachEGOinturnconsistsofoneormoresimpleoperations(SO’s)modifyingthepolygon.SO’sarelow-level,basicoperations,andarethemostatomicoperationsavailable.Itisobviousthatthereareoperationswhichmod-ifythetopologyofapolygon,namelytheinsertionandremovalofvertices,
4MonikaSesterandClausBrennerSOIVDVMVRVDescriptionInsertVertexDuplicateVertexMoveVertexRemoveVertexParametersIV[edgeid][rel.position]DV[vertexid]MV[vertexid][dx][dy]RV[vertexid]InverseOperationRV[edgeid+1]RV[vertexid+1]MV[vertexid][-dx][-dy]–Table1.Setofsimplegeneralizationoperations.
andoperationswhichaffectthegeometryonly.Table1showsalistofsimpleoperations.Thislistisnotminimal,sincee.g.a’DVi’operationisequiva-lentto’IVi,0’.However,forconvenienceandforachievingamostcompactencoding,theoperationsmightbedefinedredundantly.Theparametersin-volvedareedgeandvertexid’sandrelativepositions.Edgeandvertexid’srefertoanimplicitnumberingofpolygonedgesandverticesinclockwiseorcounterclockwiseorder.Knowingtheparametersofasimpleoperationallowstoimmediatelygivetheinverseoperationexceptforthe’removevertex’oper-ationforwhichtheinversewouldrequireanadditionalparametertospecifythelocationofthevertextobeinserted.
4GeneralizationOperations
Inthissection,theuseofthesimpleoperations(SO’s)describedaboveisappliedtotwogeneralizationproblemsthatrelatetothegeneralizationofbuildings.Whenpresentingbuildingsinincreasinglysmallerscalerepresen-tations,differentgeneralizationoperationshavetobeapplied,whichcanbedistinguishedintothreemaingroupsofoperations,dependingonthescalelevels:inscalerangesupto1:20.000theindividualbuildingshapesaresim-plifiedbyinspectingthevisibilityoftheshortestfacades.Thisisshowninsection4.1.Furtherreducingthescalerequiresanamalgamationofadjacentbuildingstoformlargerobjects,asindividualbuildingswouldbetoosmalltostillberepresented.Inevensmallerscales,buildingshavetobeselectivelyremoved,enlargedandsymbolized.Thisrequiresthetypificationoperation,wheregroupsofindividualbuildingsarereplacedbynewgroupswithlessbuildings.Thisisdemonstratedinsection4.2.Thus,inthefollowing,theencodingoftwobuildinggeneralizationfunctionsintermsofEGO’swillbedemonstrated.Amalgamationisnottreatedhereindetail,howeverinsection6.1anoverviewisgiven,howothergeneralizationoperationscanberealized.4.1BuildingGeneralization
Thegeneralizationofbuildinggroundplanshastotaketheregularitiesoftheobjectintoaccount.Thus,especiallyrectangularityandparallelismhavetoberespectedandevenenforced.Weusearule-basedapproachwhichiteratively
ContinuousGeneralizationforVisualizationonSmallMobileDevices5
inspectssmallbuildingfacadesandtriestoreplacethemdependingonthespatialcontext,i.e.itsprecedingandsucceedingbuildingfacades[Sester2000].Inthisway,intrusionsandextrusionscanbeeliminated,aswellasoffsetsandcorners.Threerulescanbedecomposedintosimpleoperations.Inthefollowing,thegenerationofthesequenceofsimpleoperationsisdescribedforeachofthethreerules,leadingtothreeEGO’s.Theoperationsaretriggeredbyabuildingsidesnthatissmallerthanaminimumvalue,correspondingtoaminimumsidejustvisibleatagivenscale.Asnotedabove,theinverseoperationisdescribed,namelygoingfromageneralizedversiontothemorespecificone.Offset
Anoffsetisremovedbyextendingthelongersideoftheadjacentneighborsoftheshortestedgesn.InFigure1,sn−1isintersectedwithsn+2toproducethenewnodennew.Invertingthisprocessanddescribingitwiththesimpleoperationsdescribedabove,leadstothefollowingsequenceofSO’s,composingtheEGOforremovingoffsets.
Pn+1
sn+1
Pn
sn+1, new
Pn+1
Pnew
sn-1
sn-2
sn
sn+2
Pn
Figure1.Removinganoffsetandgeneratingsimpleoperationsforit.
1.Notelengthlnoftheshortestedgesn:
EPSl_nsn+1,old
2.InsertvertexPnonsidesn+1,newatrelativeposition:RelPos=sn
+1,new
IVS_n-1,RelPos
3.Duplicatethisvertex,andthuscreatenewpointPn+1.
DVP_n
4.MovethisnewvertexPn+1tothepositionoftheoldvertexPn+1,andmovevertexPntothepositionoftheoldvertexPn+2byincrementsdx1/dy1anddx2/dy2:
MVP_n+1,dx1,dy1MVP_n,dx2,dy2Extrusion
Anextrusioniseliminatedbyshiftingitbackorforthtobeinlinewiththecorrespondingmainbuildingside.Figure2showshowtheextrusionisshiftedbacktothecorpusofthebuilding.
6MonikaSesterandClausBrenner
Pn
sn
Pn+1
PnPn-1
Pn+1
sn-1sn-2Pn-1
sn+1sn+2
sn-2,new
Pnew
Figure2.Removinganextrusionandgeneratingsimpleoperationsforit.
Theextrusioniscutoffalongtheshortestneighboringfacadeofsn.InthecaseofFigure2,itissn−1,thusthenewstructureisderivedbyinter-sectingsidesn−2withsn+1leadingtotheintersectionvertexPnew.Invertingthisoperationleadstothefollowingsequenceofoperations,representinganextrusion-EGO:
1.Notelengthlnoftheshortestedgesn:
EPSl_ns−2,new
2.InsertvertexPn−1onsidesn−2,newatrelativeposition:RelPos=sn
n−2,old
IVs_n-2,RelPos
3.Duplicatethisvertex,thuscreatingnewvertexPn
DVP_n-1
4.MovethisvertextothepositionoftheoldvertexPn,andmovevertexPnewtothepositionoftheoldvertexPn+1byincrementsdx1/dy1anddx2/dy2:
MVP_n,dx1,dy1MVP_new,dx2,dy2Corner
Acornerisremovedbyintersectingtheadjacentedges(seeFigure3).
sn-1
Pn
sn
Pn+1
sn-1,new
Pn
Pnew
sn+1
Figure3.Removingacornerandgeneratingsimpleoperationsforit.
AnewnodeisinsertedattheintersectionpointPnewandthuscreatingtwonewbuildingsidessn−1,newandsn+1,new,andremovingsn.Invertingtheoperationleadstothefollowingsequence:
1.Notelengthlnoftheshortestedgesn:
EPSl_n
2.InsertvertexPnonsidesn−1,newatrelativeposition:RelPos=
IVs_n-1,RelPos
sn−1,oldsn−1,new
ContinuousGeneralizationforVisualizationonSmallMobileDevices7
3.MovevertexPnewtothepositionoftheoldvertexPn+1byincrementsdx1/dy1:
MVP_new,dx1,dy1UsingtheEGO’sdefinedaboveiterativelyallfacadesofthebuildingsareremoved–startingwiththeshortestoneandendingwhentheremovalofonefacadeleadstotheremovaloftheentirebuilding.Figure4showsasequenceofoperationsintheinversegeneralizationprocess.InthiscasethebuildingiscreatedatanEPSof5,whichisthewidthofbuilding,thenanextrusioniscreatedusingtheSO’sspecified.
v3EPS 5
e2v2e1
IV 1,60%
v4e4v0
e3e3v0
e0
v3e2v2e1v1
v5DV 2
e4e5v0
e0
v4e3, v3v2e1v1
v5MV 3,2,0MV 4,2,0
e4e5v0
e0
v4e3
v2e2v3e1v1
v1
e0
Figure4.SequencegeneratingasimplebuildingandcorrespondingSO’s.
InFigure5,theprogressiverefinementoffourbuildingsisshown:thesnapshotsvisualizehow–atcertainstagesoftheparameterEPSthatdescribesthediscernableminimaldistance–moreandmorebuildingsandbuildingdetailsappear.Figure6showssomesnapshotsofalargerareainincreasing
Figure5.Progressivevisualizationoffourbuildingsatfourlevelsofdetail.
levelsofdetail:itisclearlyvisible,howmoreandmoresmallbuildingsappear,andtheyaredisplayedwithmoreandmoredetail.
Figure6.Snapshotsofincrementallyaddingmoreandmoredetail.
8MonikaSesterandClausBrenner
4.2Typification
Typificationdenotestheprocessofreducingthenumberofobjectsoutofasetofsimilarobjectswhilepreservingtheirrelativespatialdensity.Typificationisadiscreteprocess,whereasetofobjectsisreplacedbyanothersetcontainingasmallernumberofobjects.SuchachangeinrepresentationcanbecodedwiththeabovedescribedSO’s.Ithastoberealizedbyremovingtheobjectsatonegeneralizationlevelandintroducingnewobjectsatthesametime.ThesequenceinFigure7showsthegenerationandremovalofabuilding:anewpolygoniscreatedatthegeneralizationlevelEPS=10atposition(65,65)byfirstinsertingavertex;threeotherverticesarecreatedbyduplicationofthisvertex,thenallfourverticesaremovedtofourpositionsaroundthecenterpointandthusasquarewithasideof20isfinallycreated.Thisobject’survives’untilthelevelEPS=5whenit’collapses’bymovingallitsfourcornerstothecenterpointagain.
POLYEPS10NPR6565DV0DV0DV0
MV0-1010MV1-10-10MV210-10MV31010EPS5
MV010-10MV11010MV2-1010MV3-10-10
newPolygon
thefollowinginstructionappearsatmin.distance10
createnewpolygonring,consistingofonlyonepointatposition65/65;thispointgetsID0
duplicatethispointthreetimes,thuscreatepoints1to3
movepoint0totheleftandupwardsalsomoveotherpoints
nexteventhappensatminimumvalueEPS=5
movepoints0totherightanddownwards(i.e.totheoriginalzero-position65/65)
dothesamewiththeotherpoints
Figure7.Exampleoperationstogenerateandcollapseanobject.
Inthisway,adiscretechangeinrepresentationcanbecoded.Figure8showsthesequenceofatypificationofaregularstructureof16buildingsbeingreplacedbyfourandfinallybyoneinthedifferentscales,respectively.
Figure8.Threedifferentresolutions:high,mediumandlow,correspondingto=1.8,6,11,respectively.
Thegenerationofthedifferentrepresentationshastobedoneinaseparateprocess.Inourcase,weusedanapproachbasedonKohonenFeatureNetsinordertodotherearrangementofthereducednumberofobjects[Sester2004].
ContinuousGeneralizationforVisualizationonSmallMobileDevices9
Figure9showsaspatialsituationbeforeandaftertypification.Intheprocessthenumberofbuildingsisreduced,theremainingobjectsarerearrangedandthenpresentedbyeithertheoriginalbuidldingorasquaresymboldependingonitssize.Figure9.Situationbefore(left)andaftertypificationofbuildings(right).
5ContinuousGeneralizationandTransmission
5.1ContinuousGeneralization
Whenanobjectrepresentationisswitchedduetogeneralization,thisusuallyleadstoavisible‘popping’effect.Comparedtoswitchingbetweendifferent,fixedlevelsofdetail,theuseofEGO’sisalreadyanimprovement,sinceitgraduallymodifiesthepolygonratherthanjustreplacingitasawhole.How-ever,onecanstillimprovethis.IntermediatestatescanbedefinedwhichcontinuouslychangetheobjectinresponsetoanEGO.Forexample,a‘col-lapseextrusion’EGO(seeFigure2)wouldbeinterpretedas‘moveextrusionuntilincoincideswiththemainpart,thenchangethetopologyaccordingly’.Wetermthisapproachcontinuousgeneralizationasiteffectivelyallowstomorphtheobjectcontinuouslyfromitscoarsesttoitsfinestrepresentation.SinceeachEGOismadeoutofoneormoreSO’s,theireffectsondisplaypoppinghastobetakenintoaccount.However,thisistrivial,sincewecandeduceimmediatelythatIVandDVarenotchangingtheobject’sgeometry.RVwillonlyleadtoavisibleeffectifthevertex,itspredecessoranditssucces-sorarenon-collinear.Thus,MVistheonlySOthathastoberegarded.Thismeansthatacontinuousgeneralizationcanbeachievedbyusinganappro-priateencodingofEGO’sintermsofSO’s,togetherwithananimationintheclientwhichgraduallyshiftsverticesinsteadofmovingtheminonestepuponencounteringaMVoperation.Thisisimplementedintheprototype.5.2AClient-ServerCommunicationSchemeforProgressivelyStreamingMapData
Todescribethemechanismsofaprogressivestreamingofmapdata,wenowintroducethenotionofaclientandaserver.Incaseofinternetmapdisplays,
10MonikaSesterandClausBrenner
off-boardcarnavigationaswellaspersonalnavigationsystems,thesetakejusttherolesasexpected.However,inotherapplications,theymightbedefineddifferently.Forexample,on-boardcarnavigationsystemsmightdefinetheserverasthemainCPUunitwherethemassstorageresides,andtheclientasbeingtheheadunitCPUusedformapdisplayanduserinput.
OnepossiblerealizationisdepictedinFigure10,basedontheassumptionthattheserverkeepstrackofthestateoftheclient.Astatelessapproachcouldbeusedinstead,howeverthiswouldimplyalargeramountofcommunication,tellingtheservereachtimetheobjectid’sandgeneralizationlevelspresentintheclientinordertoallowtheservertocomputetheappropriatedifferentialSO’s.
Whentheuserrequestsanewpartofthemap,theclientisabletocomputetheboundingboxinworldcoordinatesandthegeneralizationlevelε,thelatterpossiblybeingbasedonthescaleaswellassomepreferenceswhichcouldbalancespeedversus‘mapquality’.Theclientsendsthisinformationtotheserverwhichcanretrievetheappropriateobjectsfromthedatabase.Sincetheserverkeepstrackofwhichobjectshavealreadybeensenttotheclient,itcandeducetheappropriateSO’sneededtoupdatethedisplayandsendthemtotheclient.WhilereceivingSO’s,theclientwillconstantlyrefreshitsdisplay.IftheuserinteractsbeforetheentiresetofSO’shasbeensent,theclientmaysendabreakrequesttotheserverwhichinturnwillstopsendingSO’s.Theremightbeadditionalcommunicationitems,forexampletoallowtheclienttodropobjectscurrentlyoutofviewtoconservememory.
UserStart systemClientStart a new sessionStore session idSession idServerGenerate unique session idPan / zoom to a certain map areaUser inputCompute world bounding box and generalization level neededBounding boxGeneralization levelRetrieve objects inside world bounding boxCompare with objects and levels already sent to the clientGenerate SO’srequired to update client’s displaySO’sVisual outputView results as they appearUpdate display progressivelyPan / zoom to another map areaUser inputEtc.Figure10.Exampleinteractiondiagramforclient-servercommunication.
ContinuousGeneralizationforVisualizationonSmallMobileDevices11
6Evaluationofresultsanddiscussion
6.1DiscussiononapplicationforothergeneralizationoperationsGeneralizationoperationscanbecharacterizedbychangesoccurringtoob-jectswhichareeitherdiscreteorcontinuous.Thesechangescanaffectindi-vidualobjectsandgroupsofobjects,respectively.
Thetwogeneralizationoperationsdescribedaboveareofthetypeofdis-cretechangesaffectingindividualobjects(section4.1)andgroupsofobjects(section4.2).Whathasbeenshownforthesetwogeneralizationoperationscanbeextendedtootherfunctionsaswell:amalgamationisanoperationthatleadstodiscretechangesofgroupsofobjects,andthusisinthesamecategoryasthetypificationoperation.Onceanappropriatealgorithmisavailable(e.g.[Bundy,Jones&Furse1995]),thecodinghastobedoneintermsofSO’sandEGO’s.Inthiscase,similartothetypification-encoding,objectshavetobereplacedbyotherobjects(inthecaseofmergingtwobuildings,thetwoobjectsceasetoexistandarereplacedbythemergedone).
Displacementisanotherimportantgeneralizationoperationtosolvespa-tialproximityconflictsbyshiftingobjectsapartandpossiblydeformingtheshapesslightly;itcanbecategorizedasacontinuousoperation.DisplacementcanbecodedeasilyashereonlyaMV-operationwithrespecttoallobjectpointsisneeded.IntermsofEGO’sacompoundmovementofallpointsofanobjectcanbebundled–onlyhowever,whennodeformationoftheobjectoccurs.ExistinggeneralizationalgorithmscanbeextendedtogeneratethecodingintermsofSO’s,e.g.Sester[2004].6.2Datavolume
Inordertoevaluatethedatavolumetobetransmittedusingthecodingschemeproposedabove,thefollowingestimationcanbedone:inourcodingscheme,onlyincrementalrefinementshavetobesenttotheclient,insteadofsendinganewrepresentationofthewholedatawheneverachangeinthedetailofthedataoccurs.Incaseofbuildingsimplificationabuildingconsistingofnpointsisiterativelysimplifieduntilapolygonwithtypically4pointsisreachedandthenitvanishes.IneachoftheEGO’soneortwopointsareremoved,thusinordertopresentallpossibleLOD’sapprox.n/2differentrepresentationshavetobetransmitted,leadington∗n/2points.Ourcodingscheme,however,requiresonlyn/2operationsleadingtoareductionfactorofapprox.1/n.
Therepresentationinourcodingschemeiscomparedtotheoriginalrepre-sentationofthedatasetintermsofanESRIshapefilefordifferentdatasets:thesizeofthedatasetinFigure6consistingof119buildingsis30Kbyte;theoriginalrepresentationintermsoftheESRIshapefile(the.shp-file)is20kByte.Anotherdatasetconsistingof2000buildingsrequires0.45MByteintermsofSO’s.Theoriginalshapefileneeds0.312MByte.Thefollowingobservationshavetobeconsideredwhenevaluatingthesenumbers:
12MonikaSesterandClausBrenner
•••
Therehavenotyetbeenanyconsiderationsconcerningefficientstorageofthecode.
TheSO-codingincludesallgeneralizationlevelsthatarepossiblebetweenthemostdetailedrepresentationoftheobjectsanditsmostgeneralone.ThecodingintermsofEGO’sallowstogroupseveralSO’stoahigherlevelstandardoperation.Inthecurrentimplementation,however,theEGO’snotyethavebeenefficientlycoded,butaredescribedintermsofSO’s.
7ConclusionandFutureWork
TheresearchpresentedinthispaperwasmotivatedbythefactthataspatialdatasetonasmalldisplaydevicelikeaPDAtypicallyhastobevisualizedindifferentlevelsofdetail:foranoverviewonlycoarseinformationofalargerextentofthemapisneeded;whentheuserzoomsininordertoinspectdetails,progressivelynewinformationisloadedforthatsmallersectionofthemaptheuserisinterestedin.However,theapproachisgenerallyapplicable,whenspatialdatatobepresentedisnotavailableonthedeviceitself,buthastobetransmittedfromaremoteserver.Besidesthetransmissiontomobiledevicesdescribedabove,thisalsoholdsforthepresentationofspatialdataintheinternet.
Inthepaperanapproachwaspresentedthatdecomposesgeneralizationoperationsintosimpleoperationsleadingtochangesintopologyandgeometry.Itwasshownhowthesesimpleoperationscanbeusedtocodemorecomplexoperationsdealingwithcontinuousandalsodiscretechangesintheobjects.Finally,animplementationforaclient-serverdatatransmissionwaspresented.Inthecurrentconcept,thegenerationoftheEGO’sisanoff-lineprocess,thatisdonebeforehand.Itis,however,alsopossibletogeneratethecodeon-the-flyuponarequestoftheclient.Inthiscase,theresponsetimeontheclientwillbedelayedbythetimeneededforthegeneralizationprocess.Thusthetrade-offbetweenstoringoverheadofthedataintermsofEGO’sandprocessingtimeforthegeneralizationhastobebalanced.Thiswillbesubjecttofurtherinvestigations.Futureworkwillalsoconcentrateofimplementingthisconceptinadistributedsystemenvironmentandontheintegrationofothergeneralizationoperations.
References
Bertolotto,M.&Egenhofer,M.[1999],ProgressiveVectorTransmission,in:‘Trans-actionsoftheACMGIS99’,KansasCity,MO,pp.152–157.
Bundy,G.,Jones,C.&Furse,E.[1995],Holisticgeneralizationoflarge-scalecarto-graphicdata,inMu¨ller,Lagrange&Weibel[1995],pp.106–119.
Douglas,D.&Peucker,T.[1973],‘Algorithmsforthereductionofthenumberof
pointsrequiredtorepresentadigitizedlineoritscaricature’,TheCanadianCartographer10(2),112–122.
ContinuousGeneralizationforVisualizationonSmallMobileDevices13
Hake,G.,Gru¨nreich,D.&Meng,L.[2002],Kartographie,Gruyter.
Harrie,L.E.[1999],‘Theconstraintmethodforsolvingspatialconflictsincar-tographicgeneralization’,CartographiyandGeographicInformationScience26(1),55–69.
Højholt,P.[1998],SolvingLocalandGlobalSpaceConflictsinMapGeneraliza-tionUsingaFiniteElementMethodAdaptedfromStructuralMechanics,in:T.Poiker&N.Chrisman,eds,‘Proceedingsofthe8thInternationalSymposiumonSpatialDatahandling’,Vancouver,Canada,pp.679–6.
Hoppe,H.[1998],Smoothview-dependentlevel-of-detailcontrolanditsapplication
toterrainrendering,in:‘IEEEVisualization’98’,pp.35–42.
Lamy,S.,Ruas,A.,Demazeau,Y.,Jackson,M.,Mackaness,W.&Weibel,R.[1999],
TheApplicationofAgentsinAutomatedMapGeneralization,in:‘Proceedingsofthe19thInternationalCartographicConferenceoftheICA’,Ottawa,Canada,pp.1225–1234.Mu¨ller,J.-C.,Lagrange,J.-P.&Weibel,R.,eds[1995],GISandGeneralization-MethodologyandPractice,Taylor&Francis.
Nivala,A.-M.,Sarjakoski,L.,Jakobsson,A.&Kaasinen,E.[2003],UsabilityEvalu-ationofTopographicMapsinMobileDevices,in:‘Proceedingsofthe21stInter-nationalCartographicConferenceoftheICA’,Durban,SouthAfrica,pp.1903–1913,CD–ROM.
Regnauld,N.[1996],RecognitionofBuildingClustersforGeneralization,in:
M.Kraak&M.Molenaar,eds,‘AdvancesinGISResearch,Proc.of7thInt.SymposiumonSpatialDataHandling(SDH)’,Vol.1,FacultyofGeod.Engi-neering,Delft,TheNetherlands,pp.4B.1–4B.14.
Reichenbacher,T.[2004],MobileCartography:AdaptiveVisualizationofGeo-graphicInformationonMobileDevices,PhDthesis,TechnischeUniversit¨atMu¨nchen.
Sarjakoski,T.,Sarjakoski,L.,Lehto,L.,Sester,M.,Illert,A.,Nissen,F.,Rystedt,R.
&Ruotsalainen,R.[2002],GeospatialInfo-mobilityServices-aChallengeforNationalMappingAgencies,in:‘ProceedingsoftheJointInternationalSympo-siumon’GeoSpatialTheory,ProcessingandApplications’(ISPRS/CommissionIV/SDH2002)’,Ottawa,Canada,CD-Rom.
Sester,M.[2000],GeneralizationbasedonLeastSquaresAdjustment,in:‘IAPRS’,
Vol.33,ISPRS,Amsterdam,Holland.
Sester,M.[2004],OptimizingApproachesforGeneralizationandDataAbstraction,
Technicalreport,acceptedforpublicationin:InternationalJournalofGeograph-icalInformationScience.
vanKreveld,M.[2001],SmoothGeneralizationforContinuousZooming,in:‘Pro-ceedingsoftheICA’,Beijing,China.
vanOosterom,P.[1995],TheGAP-tree,anapproachto’on-the-fly’mapgeneral-izationofanareapartitioning,inMu¨lleretal.[1995],pp.120–132.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo3.com 版权所有 蜀ICP备2023022190号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务