IncompressibleRandomFlows
D.S.Dean
IRSAMC,LaboratoiredePhysiqueQuantique,
Universit´ePaulSabatier,118routedeNarbonne,31062ToulouseCedex
I.T.DrummondandR.R.HorganDAMTP,CMS
WilberforceRoad,CambridgeCB30WA
February1,2008
Abstract
Theadvectionofapassivescalarbyaquenched(frozen)incompressibleveloc-ityfieldisstudiedbyextensivehighprecisionnumericalsimulationandvariousapproximationschemes.Weshowthatsecondorderselfconsistentperturbationtheory,intheabsenceofhelicity,perfectlypredictstheeffectivediffusivityofatracerparticleinsuchafield.Inthepresenceofhelicityintheflowsimulationsrevealanunexpectedlystrongenhancementoftheeffectivediffusivitywhichishighlynonperturbativeandismostvisiblewhenthebaremoleculardiffusivityoftheparticleissmall.Wedevelopandanalyseaseriesofapproximationschemeswhichindicatethatthisenhancementofthediffusivityisduetoanovelsecondordereffectwherebythehelicalcomponentofthefield,whichdoesnotdirectlyrenormalizetheeffectivediffusivity,enhancesthestrengthofthenonhelicalpartoftheflow,whichinturnrenormalizesthemoleculardiffusivity.Weshowthatthisrenormalizationismostimportantatlowbaremoleculardiffusivity,inagreementwiththenumericalsimulations.
DAMTP-2000-139
1
1Introduction
Theadvectionofpassivefieldssubjecttomoleculardiffusionandconvectionbyturbu-lentfluidhasbeenextensivelystudiedbyboththeoreticalandcomputationaltechniques[1,2,3,4,5,6].Bycomparingtheresultsofsimulationwiththetheoreticalpredictionforvariouslong-rangequantities,theefficacyofthetheoreticalmethodscanbetestedalbeit,insomewhatartificialmodels.Theapplicationstothephysicsofcomplexsys-temsandengineeringaremanyfold.Inpracticalproblemsweneedtocalculatethebulkpropertiesofrandommediagivenstatisticalmodelsforthedisorderpresent.Ingeneralthecomplexityoftheserealworldproblemsmeansthatonemustresorttoapproxima-tionschemestocalculatetheselargescalebulkproperties.Itisthereforeessentialtoverifyvariousmethodsofanalysisonmodelproblemsbeforeonecanbeconfidentthattheseorsimilarmethodscanbeappliedtomorerealisticsystems.Thesuccessofanapproachdependsonwhethertheapproximationpreservestheessenceofthephysicalmechanismresponsiblefordeterminingthelong-rangeparametersoftheadvectionintermsoftheparametersdescribingthelocalcharacteristicsoftheflow.InthispaperweconsideradvectioninahelicalGaussianturbulentflowwhichwasoriginallystudiedin[4].Thesurprisingresultobservedonthebasisofsimulationisthatthelong-rangeeffectivediffusivity,κe,isgreatlyenhancedbythepresenceofthehelicitybymorethanafactoroftwo,theeffectbeingstrongestforsmallmoleculardiffusivity,κ0.Intheab-senceofhelicitythecalculationofκetotwoloopsinself-consistentperturbationtheoryagreesaccuratelywiththesimulationforallκ0.However,suchanapproachpredictsthatevenmaximalhelicitywillhaveonlyasmalleffectoftheorderof10%.Thisisinstarkcontrasttotheresultsofsimulation.Thepuzzleistoexplaintheseresultsforwhatisarelativelysimplyposedsystem.Asuccessfultheoreticalapproachwillinvolveinfiniteresummationsofcontributionsanditisinthissensethattheenhancementisnon-perturbative.
Inthispaperwediscussapossibleresolutionoftheconflictbetweentheoryandsimulationbyusingvariousmethodstoidentifythelow-wavenumbereffectivetheorygoverningthediffusivedispersalofparticlesadvectedintheturbulentflowwhenhelicityispresent.Thederivationoftheeffectivetheoryisguidedbytherenormalizationgroup(RG)ideathattheGreenfunctionatlowwave-numberis,insomeapproximation,thesolutiontoaneffectivesecond-orderdifferentialequationwhoseparametersaredeterminedself-consistentlyintermsoftheoriginalor‘bare’definingthemodel.Theeffectofhelicityintheflowcausestheturbulentvelocityfield,u(x,t),tobeadditivelyrenormalizedbyatermproportionaltothevorticity,ω=∇×u.Thecoefficientofproportionalityisaisapseudo-scalarwhichisgeneratedbytheaxial-vectornatureofthehelicalflowandsodependsonthehelicityh,definedintermsofuby
h=u·∇×u
(1.1)
where·denotestheensembleaverageovertherandomvelocityfield.Inourmodelthemagnitudeofhismeasuredbyaparameterλ,0≤λ≤1,andtheresultsaregivenintermsofλ.Theusualperturbativeresultforthedependenceofκeonλisthatκeisaseriesinλ2forallvaluesofκ0.Thisisself-evidentsincethemagnitudeofκeisindependentofthesignofλ.Thesimulationisseeminglyconsistentwiththisfactforλ<0.2atκ0=0butisnotwellfittedbyanysimpleapproach,andforlargerλthe
2
curveliesfarhigherthanthenaivecalculation.Wediscussanimprovedself-consistentschemewhichexpressestheGreenfunctionandvertexfunctionsassolutionstointegralequationswhicharesolvedinalow-wavenumberapproximation.Thismethodleadstoastrongenhancementofκeforincreasingλand,assuch,isagoodindicationthatweareontherighttrack.However,forsmallλtheeffectisparadoxicallytoostrong,leadingtoanon-analyticdependenceofκeonλwhichispredictedtobeκe∼λ2/3intheone-loopcase.Thisispossiblyduetotheapproximationmadeinobtainingthesolutionbutitisacomplexmattertoascertainwhetherthisisso.AnalternativeapproachistousethefunctionalHartree-FockmethodwhichleadstoanintegralequationfortheGreenfunctionself-energyasafunctionofwave-number.Theresultofthismethodforκe(λ)isbetterbehavedatsmallλbutthepredictedenhancementisnotbigenoughanddoesnotfitthesimulationdata.Ingeneral,theeffectismostpronouncedforsmallκ0andempiricallyfromoursimulationwefindthattheresultsdistinguishtheregionsκ0≪0.2andκ0≫0.2.Thereisapronounceddipinκevsκ0atκ0∼0.2forλ=1.Thisdipisnotpredictedbyeitherofthemethodsmentionedsofar.
Wealsopresentarenormalizationgroupapproachwhichshowsamechanismfortheenhancingeffectofhelicityonκe.Therenormalizationgroupisnormallymostusefulforcomputinganomalousexponentssincetheyaregenerallyindependentofmuchofthedetailsdefiningthemodel:theideaofuniversality.ItismuchmoredifficulttocontrolastandardRGanalysisifitisusedtocalculatethecoefficientsofscalingbehaviour,i.e.,observableslikeκe.However,inref.[7]wereportedonasuccessfuluseoftheRGinpredictingκeforgradientflowsandbelievethatanRGanalysiscangenerallygiveastrongindicationofthekindofmechanismwhichinfluencesthesizeofparameterscontrollingthelarge-scalecharacteristicsofadvection.Inthispaperweshowthattheflowatlargewavevectorcanstronglyenhanceκewhenκ0issmall.Inparticular,thisapproachdoesprovideamechanismforthedipobservedinκevsκ0atκ0∼0.2forλ=1.
Insection2themodelandtheformalismarereviewed;insection3theperturbationtheoryisbrieflydescribed;insection4theself-consistentintegralequationsfortheGreenfunctionandvertexfunctionsarederivedtoone-loopandthesmallwavevectorapproximationforκeisderived;insection5thefunctionalHartreeFockmethodisexamined;insection6therenormalizationgroupapproachisexplainedandinsection7theconclusionsarepresented.
2TheModelandFormalism
In[4]theproblemofapassivescalaradvectedbyanincompressibleturbulentflowwithamoleculardiffusivitywasstudied.Theturbulentfluidvelocityfield,u(x,t),wasdescribedbyitsstatisticalpropertieswhichwereassumedtobeGaussianandsofullydeterminedbythevelocityauto-correlationfunction.Intheoriginalstudytheflowwastime-dependent,butsincetheenhancementofκebyhelicityintheflowispresentalsofortime-independentflowsweassumehere,forsimplicity,atime-independentflow(i.e.quenchedorfrozenturbulence)forwhichtheauto-correlationfunctioncanbeexpressedinthefollowingform:
ui(x)uj(x)=
′
d3k
TheensembleofvelocityfieldswastakentobehomogeneousandisotropicandsoforincompressiblefluidsFij(k)canbewrittenas
Fij(k)=Φ(k)(k2δij−kikj)+Ψ(k)iǫimjkm,
(2.2)
whereΨrepresentsthepresenceofhelicityintheflow.In[4]itwasassumedthatΦandΨtookthefactorizedforms:
Φ(k)=
(2π)3
A2kE(k)sin2ψ,
(2.3)
3
whereAischosensothat
dkE(k)=1,
u·u=u20,
(2.4)
andwhereu0isther.m.s.velocity.Choosingtheangleψtobek-independentmeans
thatthehelicityisofequalstrengthatallwavevectors.Thehelicityparameter,h,hasbeendefinedineqn.(1.1)andwiththedefinitionsineqn.(2.3),wefind
h=
2
dt
=κ0∇2Θ−∇·(uΘ),
(2.6)
andtheeffective,orlong-range,diffusivity,κe,isdefinedby
x·x(t)=
whereΘisnormalizedtounity:
d3xx·xΘ(x,t),
(2.7)
=6κet+O(t0)ast→∞,
d3xΘ(x,t)=1.
(2.8)
Forthepurposesofnumericalsimulationaparticularmemberofthevelocity-fieldensembleisthenrealizedby[1,2,4]
u(x)=A
N
n=1
+
wherethevectorsξnandχnaredistributeduniformlyandindependentlyovertheunit
sphereandthewavevectorknisdistributedaccordingtothedistributionE(k).ForNsufficientlylargethecentrallimittheoremguaranteesthatu(x)isGaussianupto
4
ˆnsinψ∧kncos(kn·x)ξncosψ−χn∧k
ˆnsinψ∧knsin(kn·x)χncosψ+ξn∧k
,(2.9)
O(1/N)corrections.WehaveusedN=forwhichtheseeffectsaresufficientlysmallforourpurposes.
TosimulatetheevolutionofthescalarfieldΘ(x,t)weintegratenumericallythestochasticequationfortheevolutionofaparticlewithpathx(t)givenby
˙(t)=u(x(t))+η(t),x
(2.10)
whereη(t)isaGaussianrandomvariablewithη(t)=0andη(t)·η(t′)=2κ0δ(t−t′).
Theresultingprobabilitydistributionforparticlepositionx(t)isthenΘ(x,t)withtheinitialconditionΘ(x,0)=δ(x).
Thediscreteformofeqn.(2.10)suitablefornumericalintegrationis:
xn+1−xn=u(xn)∆t+(2κ0∆t)
1
M
a=1
=6κet+O(1)
M
x(a)(t)·x(a)(t),
ast→∞.
(2.12)
HereMisthetotalnumberofpathsaveragedoverand(a)labelthememberofthe
ensembleofpaths.InpracticeMisfinitebutlargeenoughtogiveanestimateforκewithsmallerror.Inadditiontmustbelargeenoughsothatthepathevolutionisintheasymptoticregimewheretheevolutioncanbesuitablydescribedintermsoflongrangeeffective,or“renormalized”quantities.Thattislargeenoughistestedbyensuringthattheestimateforκeisindependentoftwithinstatisticalerrors.
3PerturbationTheory
Theperturbativeapproachtosolvingeqn.(2.6)iswellknown[8,9,6]andweonlysummarizeherethenecessaryresults.
SinceweareinterestedintheeffectiveparametersgoverningtheevolutionofthedistributionΘ(x,t),westudytherelatedGreenfunctionG(x)whichsatisfies
κ0∇2G−u·∇G=−δ(x),
(3.1)
˜(k)wheretheincompressibilityofuhasbeenused.Aperturbationseriesinu/k0forG
canbegeneratedbyiteratingtheformalsolutiontoeqn.(3.1)inFourierspace:
˜(k)=G
1
κ0k2
dq
κ0k2−Σ(k)5
,(3.3)
wheretheaveragingoverthevelocityensembleisdoneusingWickstheoremtogiveadiagrammaticexpansionandΣ(k)isgivenbyoneparticle-irreduciblediagrams.The
˜isgivenasymptoticbehaviourineqn.(2.12)impliesthatthesmallkbehaviourofG
by
κe=κ0−
d
2
u226k20
0
e−k/2k0
,
Ψ(k)=
λkΦ(k),
whereλ=sin2ψ.
Thesimpletwo-loopcalculationforκegivestheresult
κe=κ0
1+
1
κ20059λ2
0k2+(0.0
−0.00884)
u40
(3.6)
theoryisparametrizedandwhichquantitiesaretreatedself-consistently.Asuccessfulresultwilldependonhowwellthemethodcapturesthedominanteffectsinthisway.
Wefirstdiscussthesimplestapproachwhichtreatsonlyκeself-consistently.Attwo-loopsthisgivesanexcellentfitforκewhenλ=0butfailsforλ=0.Wethengeneralizethemethodandshowthatwecanqualitativelyexplainthelargeenhancementinκeduetohelicityalthoughtheapproachisstillquantitativelydeficient.Furthergeneralizationsarediscussedbuthavenotyetbeencarriedout.
4.1
Self-Consistencyinκe
Togeneratetheself-consistentperturbationseriesinκetheeqn.(3.1)forG(x)isformallyrearrangedtobecome
κe∇2G−∆κ∇2G−u·∇G=−δ(x),
(4.1.1)
where∆κ=κe−κ0.Thesecondtermisacounter-termwhichisincludedaspartoftheperturbation.Itisformallyoffirstorderintheexpansionparameterwhichallowstheexpansionforκetobeconstructedtoaconsistentorder.Theself-consistentperturbationseriesisgeneratedbyiterating˜(k)=G
1
κek2
dq
dk2
Σ(k)|k=0=0.
(4.1.3)
22ToN-thorderinu20/κek0itisalwayspossibletowritethisconditionintheform
κe=κ0+κeFN(κe,λ),
FN(κe,λ)=
N
gn(λ)
n=1
u20
9
κ2e
=κe
1
κ4e
0.0059λ2−0.00884
.(4.1.5)
Thisresultcanbere-expressedintheformofeqn.(4.1.4)tobecome
κe=κ0+κe
1
κ4e
.(4.1.6)
Weshowthetwo-loopself-consistentpredictionforκecomparedwithdatainfigures7–11.Infigures7,8and9κeisplottedagainstκ0forfixedl=0.0,0.4,1.0andinfigures10and11κeisplottedagainstλforfixedκ0=0.0,0.2.Asshouldbeexpected,wesee
7
fromfigures8and9theagreementbetweentheoryandsimulationisacceptableforκ0largeenough.Thisissimplybecausethelargemoleculardiffusivityswampsallothereffects.However,thereisalargedisagreementforsmallκ0whichismostmarkedforκ0=0.ThepredictionforκebehaveslikeO(λ2)andforκ0changesfromκe=0.3697atλ=0toκe=0.4090atλ=1:anincreaseof10%.Incontrast,thesimulationgivesκe=0.3705(1)andκe=0.8018(7)respectivelyatthesetwovaluesofλ:anincreaseofmorethanafactoroftwo.Fromthesimulationforκ0smallenoughwefindthatκeasafunctionofλisstronglyindisagreementwiththeslowpolynomialbehaviourinλpredictedbyself-consistentperturbationtheory.Thiseffectwasfirstobservedin[4]andhasremainedunexplained.
Inaddition,infigure9weobserveamarkeddipinthedataatfixedλ=1forκeversusκ0ataboutκ0=0.2.Themajorfeatureisthatκerisesrapidlywithλatκ0=0whereastheeffectforκ0ofthecurveasλincreasesatκ0≥=00..22butismuchratherlessastrong:rapidrisethewithdipλisatnotκ0a=lowering0.Theself-consistentpredictionofthissectiondoesnotpredictadipofanykind.
4.2Amoregeneralapproach
Inthissectionweproposeanexplanationoftheenhancementofκebyhelicityintheflow.Thetechniqueispresentedindetailattheone-looplevelandtheextensiontwo-loopisthengiven.
Thephilosophyistosuggestaneffective,lowwavevectordiffusionequationobeyedbythesmootheddistributionfunction.Becausethewavevectorissmallitisassumedthattheequationcanbelimitedtoatmosttwospatialderivatives.Theshortcomingsofthisassertionarediscussedlater.Weproposetheequation
dΘ
Theself-consistentequationsaregivenbysettingthenextrenormalizationsofκeandβRtozeroinperturbationtheory.Thisgivestwoequationswhichsimultaneouslydetermineκe,αRandβRintermsofthebareparametersκ0,α0andβ0.ItisconvenienttodefinethegeneralvertexUi(k′,k)oftheform
Ui(k′,k)=iV(k′,k)k′i+W(k′,k)(k′∧k)i,
(4.2.3)
wheretheform-factorsVandWarescalarfunctionsofkandk′.Thebarevertex
00U0iisdefinedbyV=α0,W=β0.Thereisnoindependentform-factorcoefficient
proportionaltokiinthisexpansionsincethevelocityfieldisincompressible.ThediagrammaticrepresentationofU0iisshowninfigures1cand1d,wherethebarevertexisrepresentedbyanopencirclewhiletherenormalizedvertexcarriesadditionallyan
˜(k)canbedefinedasinsetletter‘R’.Likewise,thegeneralexpressionforG
˜(k)=G
1
graph.Weconsiderthecontributionshowninfigure4tothevertexrenormalizationandwillconcentrateonthepartproportionaltok′.Thevalueofthisgraphis
Tβαα=
α2RβR
dq
κe(k−q)2κe(k′−q)2
.(4.2.6)
Theapproximationsofeqn.(4.2.5)havebeenimplemented.Onlythehelicalpartof
Fij(q)contributesandwefindtheresult
Tβαα=
α2RβRλ
ik′i
(2π)3
dq
ǫlmnkmqn(k′−q)pqǫlpqqqΦ(q)
(k−q)2(k′−q)2
.
(4.2.7)
κ2e
ClearlythecontributiontoVisO(k·k′)andsoαisnotrenormalized.Allcontributions
toVaresimilarlyofhigherorderandtheresultisthatαR=α0.
Thecouplingβisrenormalizedwhenλ=0.Thecalculationfollowsasimilarpathtothatusedintheanalysisoftherenormalizationofα.AgainweshowonecalculationexplicitlyandconsiderthecontributiontoW(k,k′)bycalculatingthecoefficientof(k′∧k)inTααα:
Tααα=−i
α3R
(2π)3
(k−q)l(k′−q)nFln(q)
κ2e
dq
(k−q)2(k′−q)2
α3λ
.(4.2.9)
HencewefindthecontributionδβRtotherenormalizationofβfromTαααtobe
δβR=−
6π3
dqqnΦ(q)
n=1,2,3.(4.2.11)
Afterevaluatingalltherelevantgraphstheself-consistentequationsare
αR−α0=0,
22
β0−βR+(α3RλI1+2αRβRI2+αRβRλI3)=0.
(4.2.12)
˜(k)isgivenbytheequationforΣ(k)intermsTheapproximateequationforG
oftheone-particleirreduciblegraphsinfigure5atone-looporder.Becauseweareusingthelow-wavenumberapproximationthisreducestosubstitutingtheexpression
10
fortherenormalizedvertexUi(k′,k)givenineqns.(4.2.3)and(4.2.12)intotheone-loopdiagramforΣ(k)infigure5.Weanalyzetheone-loopself-energygraphandkeeponlythetermproportionaltok2.Inobviousnotationthisgivestheresults
Tαα∼−
2α2R
κe
I3.
(4.2.13)
Usingthespectraineqn.(3.6)eqns.(4.2.12)and(4.2.13)fortheone-loopself-consistentconditionsbecome:
∆α≡αR−α0=0,where
B1=
1
−∆β+
B1
κe
=0,(4.2.14)
2
α2R+4
2
αRβRλ+3βR
2
9π
.(4.2.15)
¿Fromtheseequationsitisclearthatnorenormalizationoccursifthereisnopseudo-scalaroraxial-vectorquantityintheproblem:ifβ0=λ=0thentheproblemreducestotheone-loopself-consistentanalysispresentedinsection4.1.However,ifeitherβ0orλarenon-zerothenβisrenormalizedandtheeffectonκeisencodedineqn.(4.2.14).InourcasewesetαR=α0=1,β0=0andλ=0.Theequations(4.2.14),(4.2.15)thengive
3
2
2
β3+3βRλ+9
9κe
2
α2R+4
κeκ0βR−π
λ
2
αRβRλ+3βR
.(4.2.16)
Forsmallλandκ0=0wededucethat
β∼
1
3
+
1
18π
1/3
λ2/3.
(4.2.17)
Thedataforκeversusλforκ0=0isshowninfigure10andweseethatforsmallλthesimulationresultsarenotcompatiblewithλ2/3behaviour.Weshallseebelowthatthisisnotrectifiedinthetwo-loopself-consistentcalculation.However,inthisone-loopcalculationthereisaconsiderableenhancementinthedependenceofκeonλ,whereasintheself-consistentcalculationofsection4.1,inwhichthegenerationofthenewvertexcoupledtothevorticityωwasnotincluded,thereisnoeffectatallatone-looporderandonlyamildeffectattwo-looporder.Theequations(4.2.16)canbesolvednumerically.Forexample,forκ0=0,λ=1wefindβR=0.3456andtheeffectivevelocityfieldispredictedtobe
uR=u+βRω,
11
(4.2.18)
whichclearlyleadstoanenhancedeffectivediffusivity,κe=0.5207,comparedwithκe=0.4090fromthetwo-loopcalculationoftheprevioussection.Webelievethatwehavequalitativelycapturedthemechanismresponsiblefortheenhancementoftheeffectivediffusivitybyhelicity.
Theone-loopcalculationislimitedbecauseitisnotaccurateatλ=0unlikethetwo-loopcalculation.Wehaveinvestigatedthetwo-loopextensionoftheself-consistentapproachwhenthenewvertexwithcouplingβisincluded.Thisismoreinvolvedandtheintegralsweredonenumerically.Wepresentthefinalresultsbelow.
Thetwo-loopself-consistentequationsare
∆κ+C1
∂C1
κeκ3(Ce2−C12
)−∆β+
B1
κ3B+
B2
e
1−∆β1∂β
κ2+
1
)e
∂β
−∆β+
B1
−2B1C1−B1
∂B1
κ4(Be
2=0,
=0,
woulduseafunctionalself-consistentmethodforUi(k′,k)(eqn.(4.2.3))andΩ(k2)(eqn.(4.2.4)).Althoughacomputationallyformidabletask,thisislikelytoencodethecorrectbehaviourmuchmoreaccuratelythandoesourlow-wavenumberapproximation.
Theoriginofthedipinfigure9inthecurveκeversusκ0forλ=1isunexplainedbythetheorypresentedsofar.
5TheFunctionalHartree-FockMethod
Thisapproachgoessomewaytowardsincludingeffectsomittedinthelow-wavenumberapproximation.Theversionpresentedhereisdeficientinthatthepredictionforκewhenκ0=λ=0isnotasaccurateasthetwo-loopself-consistentapproachbuttheadvantageisthatΩ(k2),eqn.(4.2.4),istreatedasfunctiontobedeterminedself-consistentlybytheHartree-Fockequations.Theverticesarestilltreatedinthelow-wavenumberapproximationand,asintheprevioussection,theyareparameterizedbyαandβ.
TheintegralequationtobesatisfiedbyΩ(k2)andtheone-loopequationsatisfiedbythevertexfunction,whichisthesameastheone-loopself-consistentequation,areshowninfigure6.Notethat,unliketheself-consistentcalculationoftheprevioussection,onlyoneoftheverticesintheone-loopself-energyisreplacedwiththefullvertexsincethisgivesthecorrectcountingofdiagramswhentheequationsareiterated.Theself-consistentcaseisdifferentbecausetheaugmentedvertexisalreadypresentintheperturbationtheoryandcorrectionsareimplementedbycounter-terms.Theapproximationfortheverticesineqn.(4.2.5)isusedandβisdeterminedusingeqn.(4.2.14):
β=β0+
B1
2k2
e−k2
/22π
dp
(pkcosh(pk)−sinh(pk))e−p
2/2
(2π)3
|p+k|φ(|p+k|)(k2p2−(k·p)2)
somesimplificationofthefunctionformwereimplemented.Also,whiletheequationforΩ(k2)isalreadyexactatone-loop,thatforthevertexisnotandwecannotprecludethathigherloopcorrectionsmightbeimportant.Wehavenotpursuedthisapproach.
Wenotethatinthisapproach,aswiththoseoftheprevioussections,themarkeddipinκeasafunctionofκ0forthelargervaluesofλisnotreproduced.
6TheRenormalizationGroup
Intheprevioussectionwepresentedananalysisbasedontheassumptionthatthelarge-scaleadvectioniscontrolledbyaneffectivetransportequationdominatedbythetermscontainingonlyoneandtwoderivatives.Thismethodisrelatedtotherenormalizationgroup(RG)methodswhichhaveprovedverysuccessfulinpredictingexponentsincriticalphenomenon.IntheRGapproachalargewavenumbercutoff,Λ,isintroducedandtheadvectiononscaleslargerthanL≡2π/Λisassumedtobedescribedbyaneffectivetransportequation,inprinciplecontainingtermswithanarbitrarilyhighnumberofderivatives.TheparametersinthisequationarefunctionsofΛinordertoaccountfortheeffectofadvectionatthescalessmallerthanLwhichhavebeenexcised.InthelimitΛ→0theeffectiveequation,bydimensionalanalysis,takesasimpleformdominatedbytermswithfewderivativesandwithassociatedeffectiveor“renormalized”parameters.Inthiswaytheeffectiveequationtakesaformsimilartothatusedintheprevioussection.Thereisadifference,though,becauseanypracticalapplicationoftheseschemesrequiresadrastictruncationoftheoperatorspace:especiallyintheRGmethodwhereitisimpossibletocomputetheflowwithchangingΛforverymanyparametersintheeffectivetransportequation.Unlikethesituationincriticalphenomenatherearenoinfra-reddivergencesinthetheoryandthenotionofarelevantoperatorisnotapplicable.Itisthenamatteroftrialanderrortodeterminewhethertheapproachusedcapturesthevitalfeaturescontrollingtheflow.Thesimplestrenormalizationschemeistocalculatetherenormalizationtothediffusivityκ(Λ)andtothevertexassociatedwiththecouplingoftherandomfieldorexternallyapplieddrift.lnthecaseofgradientflowswedemonstratedinreference[7]thatthisschemeyieldsexactresultsinoneandtwodimensionsandanextremelyaccurate,althoughnotexact,resultinthreedimensions.Itis,ingeneral,muchhardertocalculatedtherenormalizedparameterssuchasκethantheassociatedexponents,andsosuccessin[7]suggeststhatsomeinsightmaybegainedusingRGmethodsinothersimilarproblems.
InthissectionwepresentaRGcalculationofκe.ThevertexrenormalizationisdonebutmultiplevertexrenormalizationisneglectedwhichmeansthattherenormalizedvelocityfieldremainsGaussian.Consequently,afterintegratingouttherandomfielddowntowavenumberΛwepostulatethattheequationfortheeffectiveGreenfunctioncanbeapproximated,forallΛ,byanequationofthesameformastheoriginalone(eqn.3.1):
κ(Λ)∇2G(x,Λ)−u(x,Λ)·∇G(x,Λ)=−δ(x),(6.1)whereκ(Λ)istherunningrenormalizeddiffusionconstantanduΛistherenormalized
velocityfield.Sincewerenormalizethevertexfunctionallythefieldcorrelationfunction
14
willflowundertheRGas
u˜i(k,Λ)u˜j(k,Λ)=
where
′
(2π)3δ(k+k′)Fij(k,Λ)|k|<Λ
0|k|>Λ
(6.2)
Onefindsthattherenormalizedfieldisstillincompressible.Weshallcomputetheflow
equationsforκ(Λ),Φ(k,Λ)andΨ(k,Λ)asΛvaries.
Thechangeinκ(Λ)onintegratingoutwavevectorsintheshell(Λ,Λ−δΛ)is
δκ(Λ)=−
1
Fij(k,Λ)=Φ(k,Λ)(k2δij−kikj)+Ψ(k,Λ)iǫimjkm.
(6.3)
(2π)3
Λ
′uFij(q′,Λ)kiqjqk˜k(q,Λ)
Λ−δΛ
(2π)3κ2(Λ)
qju˜k(q,Λ)
ΛΛ−δΛ
′Fij(q′Λ)qk
6π2κ2(Λ)
ǫijkqju˜i(q,Λ)Ψ(Λ,Λ)δΛ
(6.7)
Inrealspacetherefore,therenormalizationisoftheform
u→u+δΛβ(Λ)∇×u.
(6.8)
Usingtherenormalizationofu˜onemaycomputetheflowofFijandthusΦandΨto
obtaintheoneloopfunctionalRGequations:
∂κ∂Φ(q,Λ)∂Ψ(q,Λ)
3π2κ(Λ)
Λ2Φ(Λ,Λ)Ψ(q,Λ)Ψ(Λ,Λ)q2Φ(q,Λ)Ψ(Λ,Λ)
(6.9)
3π2κ2(Λ)3π2κ2(Λ)
Theintegrationoftheeqns.(6.9)isfromΛ=∞to0withtheinitialconditions
κ(∞)=κ0
15
Φ(q,∞)=Φ(q)Ψ(q,∞)=Ψ(q).
(6.10)
Whenthereisnohelicitythereisnovertexrenormalizationattheorderweareconsideringandthereforewemayintegratetheequationsdirectlytoobtain
2
κe=(κ20+2u0/9)
1
2/3=0.47140whichisquantitativelynotveryclosetothe
numericallymeasuredresult,κe=0.3697.However,thediscrepancyissensitivetotheformassumedfortheeffectivediffusionequation.Inourcasethisisgivenbyeqn.(6.1)whichisclearlyinadequatesinceuisnotrenormalizedwhenλ=0.Animprovementcanonlybemadebyincludingtermswithhigherderivativesofu.Thisissimilartoparameterizingthenon-helicalformfactorVRofeqn.(4.2.3)withafunctionofexternalmomentaratherthanapproximatingitbyaconstant,αR,whichisnotrenormalized.Thisisapossibleavenueofresearchbutwehavenotyetfollowedit.
Incontrast,forλ=0,uisrenormalizedandtheeffectonκeissignificantbecausethehelicalformfactorWR,eqn.(4.2.3)isrenormalizedatlowwavenumberasparametrizedbyβ(Λ)above.TheRGequationsmaybeintegratednumericallyandiscomparedwithsimulationinfigures7–11.Althoughtheresultsarenotquantitativelyaccurate,theycapturethequalitativebehaviourseeninthesimulations.Inparticular,theRGpredictsthelargeenhancementasafunctionofλseeninthedataandalsopredictsthedipobservedinthegraphofκeversusκ0forsufficientlylargeλ.
Indeed,thequalitativesuccessofthemethodsuggeststhatthedifficultyinobtainingpredictionsthataremoreaccuratemightliewiththeinadequacyofthesimpleansatzwhenappliedtothecasewhenλ=0.Theeffectofhelicityisneverthelesswellcapturedinthisapproachbecausethiseffectisdominatedbytherenormalizationofβ(Λ).
Atechnicalpointinthenumericalintegrationisthatκ0=0⇒κ(∞)=0,andtheevolutionequationsareill-definedinthelimitΛ→∞.Thisproblemiseasilyrectifiedbymakingκ0verysmallbutnon-zero.Theintegrationprocedureisthenwell-definedandtheresultsareinsensitivetotheexactvalueofκ0inthiscase.
Wethereforebelievethatalthoughtherenormalizationprocedureisnotquanti-tativelyaccurate(asshouldbeexpectedasitdoesnotgiveveryaccurateresultsintheabsenceofhelicity),itsuccessfullyincorporatestheunderlyingmechanismfortheenhancementofthediffusivitybyhelicityatsmallbaremoleculardiffusivity.
7DiscussionandConclusions
Inthispaperwehavestudiedtheproblemofturbulentadvectionofascalarfieldbyanincompressibleflowwithhelicityλ,0≤λ≤1.0,andbackgroundmoleculardiffusivity,κ0.Wehaveperformedcomputersimulationsoftheadvectionforflowswithpropertiesdescribedineqns.(2.1)to(2.4),andcomparedthelong-rangeeffectiveparametersdescribingthetimeevolutionofthescalarfieldwithvariousschemesofcalculation.Inparticular,wehaveconcentratedonhowtheeffectivediffusivity,κe,dependsonκ0andλ.Inearlierworkwefoundanstronganomalousenhancementofκeasafunctionofλforκ0=0.0[4]whichwasunexplainedtheoretically,andthisisthemotivationfor
16
thepresentstudy.Inthatearlierworktheturbulentvelocityfieldwastimedependentwhereashereitisnot.Thisallowsforeasiercalculationwhilststillreproducingtheeffect.
Theimportantregionfordiscussioncanbeseenfromthesimulationdata,figures7–11,tobeκ0<0.2;forlargerκ0themoleculardiffusivitybeginstodominateandnotonlyistheeffectofhelicitysuppressedbutalsothemanyschemesofcalculationgivegoodapproximationsforκe.Forλ=0.0wefindthatthetwo-loopself-consistentcalculationofκereproducesthesimulationdataforallκ0verycloselyindeed,asisseeninfigure7anddescribedinsection4.Theotherschemesalsoplottedaremuchlessaccurateintheregionofinterest.Ordinaryperturbationtheoryisnotconvergentinthisregionandwillbediscussednofurther.ThereasonwhytheHartree-Fockand(RG)methodsarelessaccurateisthatthevertexfunctionV(k′,k),eqn.(4.2.3),isnotrenormalizedforlowwavenumberwhichmeansthattheassociatedcouplingαisnotrenormalized.TheHartree-Fockmethodatλ=0sumsrainbowdiagramsbutdoesnotincludeanydiagramscorrespondingtoavertexcorrection,unliketheself-consistenttheory.Intheself-consistenttheorytheone-looppredictionforκ0=0isκe=1/3andthetwo-looptermsmodifythisbyδκe∼0.04,ofwhichthetwo-loopcrossdiagraminfigure3contributesonly10%,orδκe∼0.004.InomittingsimilartermstothislatteronetheHartree-Fockapproximationshouldthereforenotbeexpectedtobetoodiscrepantandthisisseentobethecase.TheRGcalculationgivesaformwhichmustyieldthesimpleone-loopperturbationtheoryexpressionatlargeκ0butallowscontinuationtoκ0=0;thisisgivenineqn.(6.11).InthecaseofgradientflowstheRGapproachisremarkablysuccessful[6]andthisisattributedtothefactthatinthatcasetheprimitivevertexisrenormalizedatlowwavenumber.
Thereasonforexaminingschemesalternativetoself-consistentmethodsisthatforλ>0agreementbetweensimulationdataandtheoryispooranditisnecessarytoinvestigatedifferentapproachesinordertotestdifferenthypothesesforasimpledescriptionoftheobservedanomalouseffect.
Forκ0>0.2allschemesexceptordinaryperturbationtheorybegintoshowrea-sonableagreementwiththedata,andforκ0>0.5allschemesclearlyreproducetheresults.Weconcentrateonresultsforκ0<0.2andtheanomalousenhancementofκebyhelicityinthisregionisseeninfigure10whereκeisplottedagainstλforκ0=0,andischaracterizedbyarapidriseinκeforλ>0.2.Analternativeaspectisseeninfigure9whereκeisplottedagainstκ0forλ=1.0.Thesignificantdipatκ0=0.2isduetothelargeeffectofhelicityonκesmallerκ0comparedwiththemuchreducedeffectatκ0∼0.2.Ithasprovedverydifficulttoconvincinglyexplainthesefeatures.However,wehavebeenabletosuggestmechanismswhichshowthepresenceofhelicityintheflowcanproducealargechangeinκefromthenon-helicalvalue,andeventhoughthesehavenotyetyieldedquantitativepredictionstheydopointtowardsareasonableexplanation.
Thebasicideaistorecognizethattheeffectiveequationgoverningtheadvectionshouldcontaintermsnotpresentintheoriginalequation.Thetermscanbethoughtofasbeinginducedinthelow-wavenumbereffectivetheorybyintegratingouthigherwavenumbers.Thismayalsobeviewedastherenormalizationoftherelatedvertexfunctionsofthetheorycorrespondingtoaselectiveresummationofdiagrams.Inourapproachwehaveassumedthatalow-wavenumberapproximationwillbevalidandso
17
suchtermswillcontaintheminimumnumberofderivatives.Theseideascanbeimple-mentedindifferentwaysandwetriedself-consistent,Hartree-Fockandrenormalizationgroupapproaches.Theself-consistentandHartree-Fockmethodsarebasedontheef-fectiveevolutionequation(4.2.1)whichcorrespondstoalow-wavenumberenhancementoftheflowvelocityuR=u+βRω,whereωisthevorticity.Weperformedatwo-loopcalculationself-consistentinbothκeandβRasdescribedineqn.(4.2.19)andfigure5.Theresultsshowthatastrongenhancementinκeispredictedbutthatthemagnitudeforλ=1.0,κ0=0.0istoosmallandtheformofthedependenceofκeonλdisagreeswiththedata.Thisisparticularlytrueatsmallλforκ0=0.0wherefromfigure10weseethatκeisonlyweaklydependentonλ,λ<0.3whereaswepredictκe∼a+bλpforfractionalp:theone-loopresultisp=2/3.
TheHartree-Fockmethod,showndiagramaticallyinfigure6,computesthecom-pletepropagatorintermsofΩ(k2)(eqn.(4.2.4))asasumoftherainbowdiagramsgeneratedfromtheeffectiveequation(4.2.1)withβRgivenbytheone-loopresultβR=−B1(βR)/κ2ewhereB1(βR)isgivenineqn.(4.2.15)andκe=κ0+Ω(0).Ariseinκewithλispredictedbutnotonebigenoughtoagreewiththedata.However,thebehaviouratsmallλisamuchslowerrisewhichismoreinkeepingwiththedatathantheself-consistentpredictioninthisregion.
Therenormalizationgroupmethodisadifferentapproachinthatitconsidersarunningdiffusivityκ(Λ)andvelocityfieldu(x,Λ)whichsatisfyκ(∞)=κ0,κ(0)=κe,u(x,Λ)=u(x).TherearethreecoupledRGflowequations,(6.9),forκ(Λ)andthetworunningspectralfunctionsΦ(q,Λ),Ψ(q,Λ)whichcorrespondtothedefinitionsineqn.(6.3).TheimportantfeatureoftheRGflowequationsisthatκ(Λ)appearsinthedenominators.ThenumeratorsaresuppressedatlargeΛbythespectralfunctionsandsothemajorcontributionisfromintermediatevaluesofΛ:Λ∼k0.Thiscontributionisstronglyenhancedforsmallκ0andresultsinthepredictionofthedipstructureobservedinthedatabutnotpredictedbytheothermethods.
¿Fromourinvestigationwemustexpectthataproperexplanationoftheobservedeffectswillrequirethecorrecteffectiveequationandtheconsequentgenerationofnewverticesbutthatunliketheλ=0casethelow-wavenumberapproximationwillbeinsufficientsincealthoughanenhancementispredictedforλ=0therapidriseisnotreproducedandnodipisobserved.TheRGmethodsuggeststhatthemaincontributionisfromwavenumbersk∼k0supportingthislatterconclusion.AsuccessfulapproachshouldthereforeincludemoretermsintheeffectiveflowequationincombinationwithanRGapproach.Thechallengeistoobtainaccurateresultsforallλincludingλ=0bysuchatechnique.Workinthisdirectioniscurrentlyunderway.
References
[1]R.H.Kraichnan.Phys.Fluids,13:22,1970.[2]R.H.Kraichnan.J.FluidMech.,77:753,1976.[3]R.H.Kraichnan.J.FluidMech.,81:385,1977.
[4]I.T.Drummond,SDuane,andR.R.Horgan.Nucl.Phys.,B220:119,1983.
18
[5]I.T.DrummondandR.R.Horgan.Phys.Lett.,B321:246–253,1994.
[6]D.S.Dean,I.T.Drummond,andR.R.Horgan.J.Phys:A:MathGen,27:5135–5144,
1994.[7]D.S.Dean,I.T.Drummond,andR.R.Horgan.J.Phys:A:MathGen,28:1235–1242,
1995.[8]R.PhythianandW.D.Curtis.J.FluidMech.,:241,1978.
[9]I.T.Drummond,SDuane,andR.R.Horgan.J.FluidMech.,138:75–91,1984.
19
qqkk′kk′V
(a)W(b)q=k′kq+α0k′kqkU0
(c)β0k′qkR≈
k′kqq+αRk′kβRk′UR(d)Figure1:Theverticesoccurringintheperturbationschemes:(a)theprimitivevelocityfield
vertex;(b)theprimitivevorticityvertex;(c)thebarecompletevertexoftheeffectivediffusionequation;(d)therenormalizedcompletevertexapproximatedasasumofrenormalizedverticesassociatedwiththevelocityfieldandthevorticity.
20
q
kΣ(k)=qq′kk-q+qq′kk-qk-q-q′k-q+kk-qk-q-q′k-q′˜(k).Figure2:Thegraphsthatcontributetotwo-loopsimpleperturbationtheoryforG
××Figure3:Theperturbationexpansiontotwo-loopsoftheself-consistentrelationforκe
21
qkβRαRq′
equationsshowninfigure5oncetheapproximationforURgivenineqn.(4.2.5)andshowninfigure1hasbeenused.ThisgraphislabelledTβαα.
αRk′Figure4:Anexampleofthekindofvertexgraphthatmustbeevaluatedinthesolutionof
22
Ω(k) k×R2RR×RRRRRRRRRk′RRRRRRR×RRRRRRRRRRRRlatingtheself-energy,Σ(k),andvertex,UR(k,k′),functions.Thevertexfunctionisrepresented
˜(k),bythefilledboxand∆U=UR−U0.bythecirclewithinset’R’,fullGreenfunction,G
Figure5:Theperturbationexpansiontotwo-loopsofthegeneralself-consistentconditionre-
23
-Ω(k) k2RR+RRR˜(k),isdenotedbythefilledbox.TheequationforU0andUR.ThefullGreenfunction,G
Ω(k)iscorrecttoallloopordersbuttheequationforURiscorrecttoone-looporderonly.
Figure6:TheintegralHartree-FockequationsforΩ(k)andURintermsofthegeneralvertices
24
λ=0.0
1.000.900.80effective diffusivity κe0.700.600.500.400.300.20
0.0
0.2
0.4
bare diffusivity κ0
0.60.8
Figure7:κeversusκ0forfixedhelicityλ=0.0.Thesimulationdataareshown(d)to
becomparedwiththepredictionsoftwo-loopself-consistentperturbationtheory(solid),theHartree-Fockcalculation(long-dashed),therenormalizationgroup(dashed)andordinaryper-turbationtheory(dot-dashed)
25
λ=0.4
0.90
0.80
effective diffusivity κe0.70
0.60
0.50
0.40
0.30
0.0
0.2
0.4
bare diffusivity κ0
0.60.8
Figure8:κeversusκ0forfixedhelicityλ=0.4.Thesimulationdataareshown(d)to
becomparedwiththepredictionsoftwo-loopself-consistentperturbationtheoryinκe(solid)andinκe,β(dotted),theHartree-Fockcalculation(long-dashed),therenormalizationgroup(dashed),andordinaryperturbationtheory(dot-dashed)
26
λ=1.0
0.90
0.80
effective diffusivity κe0.70
0.60
0.50
0.40
0.30
0.0
0.2
0.4
bare diffusivity κ0
0.60.8
Figure9:κeversusκ0forfixedhelicityλ=1.0.Thesimulationdataareshown(d)to
becomparedwiththepredictionsoftwo-loopself-consistentperturbationtheoryinκe(solid)andinκe,β(dotted),theHartree-Fockcalculation(long-dashed),therenormalizationgroup(dashed),andordinaryperturbationtheory(dot-dashed)
27
0.90
κ0=0.0
0.80
effective diffusivity κe0.70
0.60
0.50
0.40
0.30
0.0
0.20.4
helicity λ
0.60.8
Figure10:κeversusλforfixeddiffusivityκ0=0.0.Thesimulationdataareshown(d)to
becomparedwiththepredictionsoftwo-loopself-consistentperturbationtheoryinκe(solid)andinκe,β(dotted),theHartree-Fockcalculation(long-dashed),therenormalizationgroup(dashed)
28
κ0=0.2
0.65
effective diffusivity κe0.60
0.55
0.50
0.45
0.40
0.0
0.5helicity λ
1.0
Figure11:κeversusλforfixeddiffusivityκ0=0.2.Thesimulationdataareshown(d)to
becomparedwiththepredictionsoftwo-loopself-consistentperturbationtheoryinκe(solid)andinκe,β(dotted),theHartree-Fockcalculation(long-dashed),therenormalizationgroup(dashed)
29
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- huatuo3.com 版权所有 蜀ICP备2023022190号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务