例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。)( )
A. B. C. D.
例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:
(1)砝码A能够做匀加速运动的时间?
(2)砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?
例题3、如图甲,质量为m的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g.
(1)图甲中,在线的另一端施加一竖直向下的大小为F的恒力,木块离开初始位置O由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P点时,速度大小为v,O、P两点间距离为s.求木块拉至P点时弹簧的弹性势能;
(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M的物块,如图乙所示,木块也从初始位置O由静止开始向右运动,求当木块通过P点时的速度大小.
例题4、如图,质量为m1的物体A 经一轻质弹簧与下方地面上的质量为m2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m1+ m3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D的速度的大小是多少?已知重力加速度为g
1
例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。质量为m的A物体置于地面,上端与劲度系数为k的竖直轻弹簧相连。一条轻质绳跨过定滑轮,一端与斜面上质量为m的B物体相连,另一端与弹簧上端连接。调整细线和A、B物体的位置,使弹簧处于原长状态,且细绳自然伸直并与三角斜劈的两个面平行。现将B物体由静止释放,已知B物体恰好能使A物体刚要离开地面但不继续上升。求: (1)B物体在斜面上下滑的最大距离x;
(2)B物体下滑到最低点时的加速度大小和方向;
(3)若将B物体换成质量为2m的C物体,C物体由上述初始位置静止释放,当A物体刚好要离开地面时,C物体的速度大小v。
例题6、如图所示,倾角为θ的固定斜面与足够长的水平面平滑对接,一劲度系数k=18N/m的轻质弹簧
的上端固定于斜面顶端,另一端连一质量为m=1kg的光滑小球A,跟A紧靠的物块B(质量也是m)与斜面之间的动摩擦因数μ1=0.75,且最大静摩擦力等于滑动摩擦力,与水平面间的动摩擦因数μ2=0.1,图中施加在B上的力F=18N,方向沿斜面向上,A和B均处于静止状态,且斜面对B恰无摩擦力。当撤除力F后,A和B一起沿斜面下滑到某处时分离,分离后A一直在斜面上运动,B继续沿斜面下滑,已知:sinθ=0.6,
2
cosθ=0.8,重力加速度g=10m/s.
(1)A和B分离后A能否再回到出发点?请简述理由 (2)A和B分离时B的速度。 (3)求B最终停留的位置。
例题7、如图所示,半径为R的光滑半圆形轨道CDE在竖直平面内与光滑水平轨道AC相切于C点,水平轨道AC上有一轻质弹簧,弹簧左端连接在固定的挡板上,弹簧自由端B与轨道最低点C的距离为4R,现用一个小球压缩弹簧(不拴接),当弹簧的压缩量为l时,释放小球,小球在运动过程中恰好通过半圆形轨道的最高点E;之后再次从B点用该小球压缩弹簧,释放后小球经过BCDE轨道抛出后恰好落在B点,已知弹簧压缩时弹性势能与压缩量的二次方成正比,弹簧始终处在弹性限度内,求第二次压缩时弹簧的压缩量.
2
练习1:如图所示,物体A的质量为m,置于水平地面上,A的上端连一轻弹簧,原长为L,劲度系数为k.现将弹簧上端B缓慢地竖直向上提起,使B点上移距离为L,此时物体A也已经离开地面,则下列说法中正确的是( )
A.提弹簧的力对系统做功为mgL B.物体A的重力势能增加mgL C.系统增加的机械能小于mgL D.以上说法都不正确
练习2:如图甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.若以小球开始下落的位置为原点,沿竖直向下建立一坐标轴Ox,小球的速度v随x变化的图象如图乙所示.其中OA段为直线,AB段是与OA相切于A点的曲线,BC是平滑的曲线,则关于A、B、C三点对应的x坐标及加速度大小,以下关系式正确的是( )
A.xA=h,aA=g EPA >0 B.xB=h+
,aB=0 EPB最大
C.xC=h+,aC=g D.xC>h+,aC>g EPC最大
练习3:如图所示为某探究活动小组设计的节能运动系统,斜面轨道倾角为30°,质量为M的木箱与轨道的动摩擦因数为
3,.木箱在轨道顶端时,自动装货装置将质量为m的货物装入木箱,6然后木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程.下列选项正确的是( ) A.m=MB. m=2M
C.木箱不与弹簧接触时,上滑的加速度大于下滑的加速度
D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能
练习4:如图,重10 N的滑块在倾角为30°的斜面上,从a点由静止下滑,到b点接触到一个轻弹簧.
滑块压缩弹簧到c点开始弹回,返回b点离开弹簧,最后又回到a点,已知ab=0.8 m, bc=0.4 m,重力加速度g=10m/s2,则下列正确的是:( )
A.滑块动能的最大值是6 J B.弹簧弹性势能的最大值是6 J C.从c到b弹簧的弹力对滑块做的功是6 J D.滑块和弹簧组成的系统整个过程机械能守恒
练习5:(2014·广东·16)图13是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( ) A.缓冲器的机械能守恒 B.摩擦力做功消耗机械能 C.垫板的动能全部转化为内能 D.弹簧的弹性势能全部转化为动能
3
练习6:如图所示,在不光滑的平面上,质量相等的两个物体A、B间用一轻弹簧相连接,现用一 水平拉力F作用在B上,从静止开始经一段时间后,A、B一起做匀加速直线运动,当它们的总动能为Ek时撤去水平力F,最后系统停止运动,从撤去拉力F到系统停止运动的过程中,系统
A.克服阻力做的功等于系统的动能Ek B.克服阻力做的功大于系统的动能Ek C.克服阻力做的功可能小于系统的动能Ek
( )
D.克服阻力做的功一定等于系统机械能的减少量
练习7:如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,并且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A、圆环的机械能守恒 B、弹簧弹性势能变化了
C、圆环下滑到最大距离时,所受合力为零 D、圆环重力势能与弹簧弹性势能之和保持不变
练习8:(2013·江苏·9)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物
块相连.弹簧处于自然长度时物块位于O点(图中未标出).物块的质量为m,AB=a,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O点拉至A点,拉力做的功为W.撤去拉力后物块由静止向左运动,经O点到达B点时速度为零.重力加速度为g.则上述过程中( )
1
A.物块在A点时,弹簧的弹性势能等于W-μmga
23
B.物块在B点时,弹簧的弹性势能小于W-μmga
2
C.经O点时,物块的动能小于W-μmga
D.物块动能最大时,弹簧的弹性势能小于物块在B点时弹簧的弹性势能
练习9:(2014·福建·18)如图所示,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.质量不同、形状相同的两物块分别置于两弹簧上端.现用外力作用在物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块( ) A.最大速度相同 B.最大加速度相同 C.上升的最大高度不同 D.重力势能的变化量不同
练习10:如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,
弹簧水平且处于原长,圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h,圆环在C处获得一竖直向上的速度v,恰好能回到A,弹簧始终在弹性限度内,重力加速度为g,则圆环( ) A.下滑过程中,加速度一直减小 B.下滑过程中,克服摩擦力做的功为mv
C.在C处,弹簧的弹性势能为mv﹣mgh D.上滑经过B的速度大于下滑经过B的速度
练习11:如图2所示,质量相等的物体A、B通过一轻质弹簧相连,开始时B放在地面上,A、B均处于静止状态.现通过细绳将A向上缓慢拉起,第一阶段拉力做功为W1时,弹簧变为原长;第二阶段拉力再做功W2时,B刚要离开地面.弹簧一直在弹性限度内,则( )
4
2
2
A.两个阶段拉力做的功相等
B.拉力做的总功等于A的重力势能的增加量
C.第一阶段,拉力做的功大于A的重力势能的增加量 D.第二阶段,拉力做的功等于A的重力势能的增加量
练习12:如图3所示,轻质弹簧上端固定,下端系一物体.物体在A处时,弹簧处于原长状态.现用手托住物体使它从A处缓慢下降,到达B处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W.不考虑空气阻力.关于此过程,下列说法正确的有( ) A.物体重力势能减少量一定大于W B.弹簧弹性势能增加量一定小于W
C.物体与弹簧组成的系统机械能增加量为W
D.若将物体从A处由静止释放,则物体到达B处时的动能为W 练习13:如图所示,一物体质量m=2kg,在倾角为θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上端B的距离AB=4 m.当物体到达B后将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到的最高位置为D点,D点距A点AD=3 m.挡板及弹簧质量不计,g取10 m/s2,sin37°=0.6,cos37°=0.8,求:(计算结果小数点后保留两位有效数字) (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能Epm.
练习14:如图所示,轻弹簧左端固定在竖直墙上,右端点在O位置.质量为m的物块A(可视为质点)以初速度v0从距O点右方s0的P点处向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O?点位置后,A又被弹簧弹回.A离开弹簧后,恰好回到P点.物块A与水平面间的动摩擦因数为μ.求: (1)物块A从P点出发又回到P点的过程,克服摩擦力所做的功; (2)O点和O?点间的距离s1;
(3)若将另一个与A完全相同的物块B(可视为质点)与弹簧右端拴接,将A放在B右边,向左压A、B,使弹簧右端压缩到O?点位置,然后从静止释放,A、B共同滑行一段距离后分离.分离后物块A向右滑行的最大距离s2是多少?
5
练习15:如图是一组滑轮装置,绳子都处于竖直状态,不计绳子和滑轮质量及一切阻力,悬挂的两物体
质量分别为 m1=m,m2=4m,m1下端通过劲度系数为k的轻质弹簧与地面相连(重力加速度为g,轻质弹簧始终处于弹性限度之内)求:
(1)系统处于静止时弹簧的形变量;
(2)用手托住m2且让m1静止在弹簧上,绳子绷直但无拉力,放手之后两物体的运动发生在同一竖直平面内,求m2运动的最大速度.
练习16:如图所示,固定斜面的倾角θ=30°,物体A与斜面之间的动摩擦因数μ=
3
,轻弹簧下端固定2
在斜面底端,弹簧处于原长时上端位于C点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为2m,B的质量为m,初始时物体A到C点的距离为L.现给A、B一初速度v0>gL,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点.已知重力加速度为g,不计空气阻力,整个过程中轻绳始终处于伸直状态,求: (1)物体A向下运动刚到C点时的速度; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.
练习17:如图所示,在竖直方向上A、B两物体通过劲度系数为k=16N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上.用手拿住C,使细线刚好拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后它沿斜面下滑,A刚离开地面时,B获得最大速度,求: (1)从释放C到物体A刚离开地面时,物体C沿斜面下滑的距离; (2)物体C的质量;
(3)释放C到A刚离开地面的过程中细线的拉力对物体C做的功.
6
因篇幅问题不能全部显示,请点此查看更多更全内容