搜索
您的当前位置:首页正文

斐波那契数列的应用

来源:小奈知识网
+斐波那契数列的应用

第一章 斐波那契数列的提出

意大利数学家斐波那契在《算盘全集》中提出了一个有趣的兔子繁殖问题:如果每队兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同)每队兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都不死亡现象,那么从一对刚出生的兔子开始,一年只有会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2对兔子。第四个月:最初的一对兔子又生一堆兔子,共成为2+1=3对兔子。后人为了纪念兔子繁殖问题的斐波纳契将这个兔子数列成为斐波那契数列。也就是把1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。

第二章 斐波那契数列的应用

人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。

斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。

2.1 斐波那契数列与花朵的花瓣数

花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。

2.2 斐波那契数列与仙人掌的结构

在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在干旱沙漠的生长环境。

2.3 斐波那契数列与向日葵种子排列方式

向日葵种子的排列方式,就是一种典型的数学模式。仔细观察向日葵花盘,你就会发现两组螺旋线,一组顺时针方向盘旋,另一组则逆时针方向盘旋,并且

彼此相嵌。虽然不同的向日葵品种中,种子顺、逆时针方向和螺旋线的数量有所不同,但往往不会超

出34和55、55和89或者89和144这3组数字,这每组数字就是Fibonacci数列中相邻的两个数。前一个数字是顺时针盘旋的线数,后一个数字是逆时针盘旋的线数。

2.4 斐波那契数列与台阶问题

只有一个台阶时,只有一种走法,F1=1两个台阶,走法有2种,一阶一阶或者一步上两个台阶,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(,2,2),共5种方法,故F4=5以此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然、生活、科学上的联系其实还有很多,但是仅仅从这几个例子上我们就可以看出斐波那契数列的应用的广泛性,由此我们可以看到数学的美其实是无处不在的它是一门科学,同时也是一种语言,一种艺术,它如同盛开的茉莉,洁白淡雅,总而言之,数学与自然、生活相伴相随,共同发展。

2.5 斐波那契数列与蜜蜂的家谱

蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有母亲,没有父亲,因为蜂后所产的卵,受精的孵化为雌蜂(即工蜂或蜂后),未受精的孵化为雄蜂。人们在追溯雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是Fibonacci数列的第n项fn。

2.6 斐波那契数列的其他应用

菠萝果实上的菱形鳞片,一行行排列起来, 8行向左倾斜,13行向右倾斜;挪威云杉的球果在一个方向上有3行鳞片,在另一个方向上有5行鳞片;常见的落叶松是一种针叶树,其松果上的鳞片在两个方向上各排成5行和8行;美国松的松果鳞片则在两个方向上各排成3行和5行。

第三章 黄金分割

斐波那契数列和黄金比例(也叫黄金分割,Φ,取三位小数是1.618)有密切关系。如果我们把第n个斐波那契数字以Fn来表示,而以Fn+1代表下一个,那么会发现当n趋近无穷大时,Fn+1/Fn趋近Φ,请看几个相邻斐波那契数字之比(计算到小数第七位):89/55 = 1.6181818,144/89 =1.6179775,233/144 =1.6180555。这个属性是德国天文学家开普勒(JohannesKepler)于1611年首先发现的。在开普勒之后一百年,苏格兰数学家辛普孙(Robert Simpson)又予以证明。

黄金比例的起源可追溯到古希腊,著名学者毕达哥拉斯、欧几里得等人都做过研究。按欧几里得在《几何原本》的定义,直线AB在C点被分为两段,长段/短段等于全长/长段,用式子表示有:AC/CB=AB/AC。解二次代数方程,有正负解。正解是1和5的平方根之和的一半:1.6180339887……;负解是1和5的平方根之差的一半:-0.6180339887……,是1/Φ的负值。我们可以用计算器做个有趣的计算,输入1.6180339887……,然后按平方键X2,得数字

2.6180339887……;若是按1/X键,则得数字0.6180339887……你感到惊讶吗?所有在小数点后的数字都相同!黄金比例就有这个独一无二的特性。

第四章 黄金分割的应用

黄金律,又称黄金分割率,是指把直线段分成两部分,使其中一部分对全部之比等于其余一部分对于这部分之比,即0.618/1=0.382/0.618。0.618是(-l)/2的近似值,一般称之为黄金分割数。这是在公元前6世纪由古希腊哲学家、数学家毕达哥拉斯提出后,又由古希腊著名美学家柏拉图称之为“黄金分割率”的。

4.1 黄金分割的美学应用

欧洲人将此比例广泛用于建筑、生产、生活各个领域,如雅典巴特农神殿巍然屹立的大理石柱,其上、下的比例,以及古埃及胡夫大金字塔的高度和底边长度之比都符合这个比例。数学家开普勒曾把黄金比值和勾股定理称之为几何学中两大宝藏。被誉为世界艺术珍品的古希腊雕塑、断臂女神“维纳斯”整个体型的比例,以肚脐为界,全身与下身高度的比值恰为1,0.618。我国成人,肩宽和臂宽的平均数均为362毫米,肩峰到臂底的高度为586毫米,躯干的宽度与长度之比为362:586,亦巧合黄金律。尽管世界各族人的形体差异很大,但他们躯干部分的长度与宽度之比却都接近比值。除此之外,一个容貌端庄、五官修整的人,其面部的长、宽比,鼻和唇的宽度与高度之比等,都符合此值,因此人体美是世界最神奇而美妙的艺术造型。

4.2 黄金分割在灾害科学中的应用

(1)当已知一个灾害周期时,很可能还有另外一个较短的周期,它与前者之比符合黄金分割数。例如日、月引起地球的半月高潮往往触发一些灾害,该半月的0.618时段,即9天也是一个易于触发灾害的潮汐周期。这两个周期的拍是前面一个已知周期的1.618倍。

(2)当已知一个灾害周期,但由谷年向峰年的上升时段与由峰年向谷年的下降时段不相等时:它们两者之比往往符合黄金分割数。例如太阳活动的周期为n年,在其峰年和谷年易产生一些灾害,但由谷年向峰年的上升时段与由峰年到谷年的下降时段是不相等的,上升时段短,约为4.2年,下降时段长,约为6.8年,其比值接近黄金分割数。

(3)造成灾害的物性参数变化往往符合黄金分割数,例如给各种液体加热,其温度由绝对零度增加到临界温度为一区间,在该区间的0.618处或其附近即为沸点。它是液体状态的重要变化。脆性岩石受力由零值到大破坏时的值为一区间,在该区间的0.38处或其附近岩石内开始产生大量张性小裂缝,此时岩石体积变大,称为扩容,当应力达到该区间的0.618附近时,微破裂频度急剧增加,它是岩石大破坏的一种先兆。在大地震发生前,地壳岩石中横波速度与纵波速度之比有所变化,当它接近或达到0.618时,地震就可能要发生了。另外当岩石中裂缝向完整脆性介质中扩展时其扩展速度由慢变快,达到纵波速度的0.38时地震就发生了。这里所说的速度区间是指广义的形变传播速度,蠕裂的最低速为零,为区间下限。

第五章 总结

斐波那契数列在现实生活中的应用非常广泛,对其进行研究以使其为我们的生活所服务具有很大的意义。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top