搜索
您的当前位置:首页正文

初三数学几何的动点问题专题练习

来源:小奈知识网


动点问题专题训练

1、如图,已知△ABC中,ABAC10厘米,BC8厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点PA 与点Q第一次在△ABC的哪条边上相遇?

D Q P C B 32、直线yx6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,

4同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.

(1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t秒,△OPQ的面积为S,求S与t之间的函数关系式;

48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四5y 边形的第四个顶点M的坐标.

(3)当SB

P O Q A x

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,

B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),

点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;

(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

6如图,在Rt△ABC中,ACB90°,B60°,BC2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为. (1)①当 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当 度时,四边形EDBC是直角梯形,此时AD的长为 ;

(2)当90°时,判断四边形EDBC是否为菱形,并说明理由.

E O  D C O A (备用图)

B l C A B 7如图,在梯形ABCD中,AD∥BC,AD3,DC5,AB42,∠B45.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.

A D (1)求BC的长.

(2)当MN∥AB时,求t的值.

(3)试探究:t为何值时,△MNC为等腰三角形. N

B C M

8如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60. (1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.

N D A A A D D

N P P

E F

E F

E B C B M

C B M 图3

F C

图1 图2

D A D (第25A F E F E

B C B C

图5(备图4(备

9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在

第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.AEF90,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AEEF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

B E C 图1

G

B

E C 图2 A

D

F G

B 图3

C E G

F A

D

OA2,OB4.如图,11已知一个直角三角形纸片OAB,其中AOB90°,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.

(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;

(Ⅱ)若折叠后点B落在边OA上的点为B,设OBx,OCy,试写出y关于x的函数解析式,并确定y的取值范围;

(Ⅲ)若折叠后点B落在边OA上的点为B,且使BD∥OB,求此时点C的坐标. y y y

B B B x x x O A O A O A

12问题解决

如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,

CE1AMD重合)时,求,压平后得到折痕MN.当的值.

CD2BN 方法指导: AM为了求得的值,可先求BN、AM的长,不妨设:AB=2 BN

类比归纳

AMAMCE1CE1,,在图(1)中,若则的值等于 ;若则的

BNBNCD3CD4CE1AM(n为整数)值等于 ;若,则的值等于 .(用含CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAMAB1CE1m1,,重合),压平后得到折痕MN,设则的值等

BNBCmCDn于 .(用含m,n的式子表示)

F

F

M M A D D A

E

E

B C N B C N

图(2) 图(1)

因篇幅问题不能全部显示,请点此查看更多更全内容

Top