1.原核细胞(prokaryotic-cell) 无典型细胞核的细胞,其核质外面无核膜,细胞质中缺少复杂的内膜系统和细胞器。由原核细胞构成的生物称原核生物(prokaryote)。细菌、蓝藻等低等生物属原核生物。
2.真核细胞(eukaryotic-cell) 具有真正细胞核的细胞,其核质被两层核膜包裹,细胞内有结构与功能不同的细胞器,多种细胞器之间有内膜系统联络。由真核细胞构成的生物称为真核生物(eukayote)。高等动物与植物属真核生物。 3.原生质体(protoplast) 除细胞壁以外的细胞部分。包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。原生质体失去了细胞的固有形态,通常呈球状。
4.细胞壁(cell-wall) 细胞外围的一层壁,是植物细胞所特有的,具有一定弹性和硬度,界定细胞的形状和大小。典型的细胞壁由胞间层、初生壁以及次生壁组成。
5.生物膜(biomembrane) 即构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能。按其所处的位置可分为质膜和内膜。
6.共质体(symplast) 由胞间连丝把原生质(不含液泡)连成一体的体系,包含质膜。
7.质外体(apoplast) 由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。
8.内膜系统(endomembrane-system) 是那些处在细胞质中,在结构上连续、功能上关联的,由膜组成的细胞器总称。主要指核膜、内质网、高尔基体以及高尔基体小泡和液泡等。
9.细胞骨架(cytoskeleton) 指真核细胞中的蛋白质纤维网架体系,包括微管、微丝和中间纤维等,它们都由蛋白质组成,没有膜的结构,互相联结成立体的网络,也称为细胞内的微梁系统(microtrabecular system)。 10.细胞器(cell-organelle) 细胞质中具有一定形态结构和特定生理功能的细微结构。依被膜的多少可把细胞器分为:双层膜细胞器如细胞核、线粒体、质体等;单层膜细胞器如内质网、液泡、高尔基体、蛋白体等;无膜细胞器如核糖体、微管、微丝等。
11.质体(plastid) 植物细胞所特有的细胞器,具有双层被膜,由前质体分化发育而成,包括淀粉体、叶绿体和杂色体等。
12.线粒体(mitochondria) 真核细胞的一种半自主的细胞器。呈球状、棒状或细丝状等,由双层膜组成的囊状结构;其内膜向腔内突起形成许多嵴,主要功能进行三羧循环和氧化磷酸化作用,将有机物中贮存的能量逐步释放出来,供应细胞各项生命活动的需要,故有“细胞动力站”之称。线粒体能自行分裂,并含有DNA、RNA和核糖体,能进行遗传信息的复制、转录与翻译,但由于遗传信息量不足,大部分蛋白质仍需由细胞核遗传系统提供,故其只具半自主性。
13.微管(microtubule) 存在于动植物细胞质内的由微管蛋白组成的中空的管状结构。其主要功能除起细胞的支架作用和参与细胞器与细胞运动外,还与细
胞壁、纺缍丝、中心粒的形成有关。
14.微丝(microfilament) 由丝状收缩蛋白所组成的纤维状结构,类似于肌肉中的肌动蛋白,可以聚集成束状,参与胞质运动、物质运输,并与细胞感应有关。
15.内质网(endoplasmic-reticulum) 交织分布于细胞质中的膜层系统,内与细胞核外被膜相连,外与质膜相连,并通过胞间连丝与邻近细胞的内质网相连。内质网是物质合成的场所,参与细胞器和细胞间物质和信息的传递。 16.高尔基体(Golgi-body) 由若干个由膜包围的扁平盘状的液囊垛叠而成的细胞器,它能向细胞质中分泌囊泡(高尔基体小泡),与物质集运和分泌、细胞壁形成、大分子装配等有关。
17.核小体(nucleosome) 构成染色质的基本单位,每个核小体包括200bp的DNA片断和8个组蛋白分子。
18.液泡(vacuole) 植物细胞特有的,由单层膜包裹的囊泡。它起源于内质网或高尔基体小泡。在分生组织细胞中液泡较小且分散,而在成熟植物细胞中小液泡被融合成大液泡。在转运物质、调节细胞水势、吸收与积累物质方面有重要作用。
19.溶酶体(lysosome) 是由单层膜包围,内含多种酸性水解酶类的囊泡状细胞器,具有消化生物大分子,溶解细胞器等作用。如溶酶体破裂,酸性水解酶进入细胞质,会引起细胞的自溶。
20.核糖体(ribosome) 细胞内参与合成蛋白质的颗粒状结构,亦称核糖核蛋白体。无膜包裹,大致由等量的RNA和蛋白质组成,大多分布于胞基质中,呈游离状态或附于粗糙型内质网上,少数存在于叶绿体、线粒体及细胞核中。核糖体是蛋白质合成的场所,游离于胞基质的核糖体往往成串排列在mRNA上,组成多聚核糖体(polysome),这样一条mRNA链上的信息可以同时用来合成多条同样的多肽链。
21.核糖核酸(ribose-nucleic-acid) 即含核糖的核酸。它由多个核苷酸通过磷酸二酯键连接而成,细胞内的核糖核酸因其功能和性质的不同,分为三种:①转移核糖核酸(tRNA),在蛋白质生物合成过程中,起着携带和转移活化氨基酸的作用;②信使核糖核酸(mRNA),是合成蛋白质的模板;③核糖体核糖核酸(rRNA),同蛋白质一起构成核糖体,后者是蛋白质合成的场所。
22.胞间连丝(plasmodesma) 穿越细胞壁,连接相邻细胞原生质(体)的管状通道,其通道可由质膜或内质网膜或连丝微管所构成。 23.流动镶嵌模型(fluid-mosaic-model) 由辛格尔和尼柯尔森提出的解释生物膜结构的模型,认为液态的脂质双分子层中镶嵌着可移动的蛋白质,使膜具有不对称性和流动性。
24.细胞全能性(totipotency) 指每一个细胞中都包含着产生一个完整机体的全套基因,在适宜条件下,能形成一个新的个体。细胞的全能性是组织培养的理论基础。 25.细胞周期(cell-cycle) 从一次细胞分裂结束形成子细胞到下一次分裂结
束形成新的子细胞所经历的时期。可以分为G1期、S期、G2期、M期四个时期。 26.G1期:第1间隙期(gap1),又称DNA合成前期(pre-synthetic phase),从有丝分裂完成到DNA复制之前的时期,进行rRNA、mRNA、tRNA与蛋白质的合成,为DNA复制作准备。 27.S期 DNA复制期(synthetic phase)。主要进行DNA及有关组蛋白的合成。 28.G2期:第2间隙期(gap2),又称DNA合成后期(post-synthetic phase),指DNA复制完到有丝分裂开始的一段间隙,主要进行染色体的精确复制,为有丝分裂作准备。
29.M期 有丝分裂期(mitosis),按前期(prophase)、中期(metaphase)、后期(anaphase)和末期(telophase)的次序进行细胞分裂。
30.周期时间(time of cycle) 完成一个细胞周期所需的时间。
31.细胞程序化死亡(programmed cell death) 为了自身发育及抵抗不良环境的需要而主动地结束细胞生命。
二
01. 根压——植物根系的生理活动使液流从根部上升的压力 02. 蒸腾作用——水分通过植物体表面(如叶片等),以气体状态从体内散失到体外的现象
03. 水分临界期——指在植物生长发育过程中对缺水最为敏感,最易受害的阶段 04. 内聚力学说——以水分具有较大的内聚力保证由叶至根水柱不断来解释水分上升原因的学说
05. 矿质营养——植物对矿物质的吸收、转运和同化,通称为矿质营养
06. 必需元素——指在植物营养生理上表现为直接的效果、如果缺乏时则植物生育发生障碍,不能完成生活史、以及去除时植物表现出专一的、可以预防和恢复的症状的一类元素
07. 单盐毒害——溶液中只有一种金属离子对植物起有害作用的现象
08. 离子对抗——在发生单盐毒害的溶液中,如加入少量其他金属离子来减弱或消除单盐毒害的作用叫离子对抗
09. 平衡溶液——对植物生长有良好作用而无毒害作用的溶液
10. 还原氨基化——还原氨直接使酮酸氨基化而形成相应氨基酸的过程 11. 胞饮作用— —物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液体的过程
12. 通道蛋白 ——在细胞质膜上构成圆形孔道的内在蛋白 13. 植物营养临界期 —— 14. C3途径——以RUBP为CO2受体,CO2固定后的最初产物为PGA的光合途径为C3途径
15. 交换吸附——根部细胞在吸收离子的过程中,同时进行着离子的吸附与解吸附的过程,总有一部分离子被其它离子所置换,所以细胞吸附离子具有交换性质 16. C4途径——以PEP为CO2受体,CO2固定后最的初产物是四碳双羧酸的光合途径为C4途径。
17. 光系统——由不同的中心色素和一些天线色素、电子供体和电子受体组成的蛋白色素复合体。
18. 反应中心——由中心色素、原初电子供体及原初电子受体组成的具有电荷分离功能的色素蛋白复合体结构。
19. 荧光现象——叶绿素溶液在透射光下呈绿色,在反射光下呈红色的现象 20. 磷光现象——当去掉光源后,叶绿素溶液和能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。这种发光现象称为磷光现象。
21. 爱默生效应——如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。 22. 光合作用——绿色植物吸收光能,同化CO2和水,制造有机物质并释放O2并积蓄能量的过程
23. 聚光色素——没有光化学活性,只有收集光能的作用,并将之传到反应中心色素的色素
24. 光合磷酸化——叶绿体在光下把无机磷和ADP转化为ATP形成高能磷酸键的过程
25. 光补偿点——光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。
26. 光饱和点——增加光照强度,光合速率不再增加时的光照强度。
27. 呼吸作用——生活细胞内某些有机物在有氧和无氧条件下进行彻底或不彻底的氧化分解,并释放能量过程
28. 呼吸链——呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程
29. 三羧酸循环——丙酮酸在有氧的条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解,直到形成水和CO2为止的过程
30. 巴斯德效应——氧可以降低糖类的分解代谢和减少糖酵解产物的积累的现象叫巴斯德效应
31. P/O——一对电子通过电子传递链每消耗1个氧原子与所用去的磷酸的比值 32. 氧化磷酸化作用——氧化过程中伴随着ATP的合成,即氧化作与磷酸化作用同时进行的过程
33. 植物生长物质——是指一些调节植物的生长发育的物质,它包括植物激素和植物生长调节剂
34. 植物生长调节剂——指具有一些激素活性人工合成的物质
35. 植物生长调节物质——指在植物体内合成的、能调节植物生长发育的非激素类的生理活性物质。
36. 激素受体——能与激素特异地结合,并引起特殊生理效应的蛋白质类物质 37. 生长素结合蛋白——机位于质膜上的生长素受体,可使质子泵将膜内质子泵膜外,引起质膜的超级化,胞壁松弛。也有位于胞基质和核质中,促进mRNA的合成。
38. 植物激素—— 一些在植物体内合成,并从产生之处运到别处,对生长发育产
生显著作用的微量有机物
39. 自由生长素——易于从各种溶剂中提取的生长素
40. 束缚生长素——指没有活性,需要通过酶解、水解或自溶作用从束缚物质释放出来的生长素
41. 乙烯的“三重反应”——指乙烯使黄花豌豆幼苗变矮,变粗和横向生长。 42. 生长抑制剂——抑制植物顶端分生组织生长、破坏顶端优势的生长调节剂 43. 生长延缓剂——抑制植物亚顶端分生组织生长、抑制节间伸长的生长调节剂 44. 植物生长——:是指植物体积和重量(干重)上的不可逆增加,是由细胞分裂、细胞伸长以及原生质体、细胞壁的增长而引起。
45.再分化——指离体培养中形成的处于脱分化状态的细胞团再度分化形成另一种或几种类型的细胞、组织、器官、甚至最终再形成完整植株的过程。
46. 植物细胞全能性——植物体的每一个细胞携带着一套完整的基因组,并有发育成完整植株的潜在能力
47. 植物组织培养——指在无无菌条件下,将外植体接种到人工配制的培养基中培育离体植物组织、器官或细胞,以及培育成植株的技术。 48. 生长温周期现象——植物对昼夜温度周期性变化的反应
49.生长的相关性——植物各部分间在生长上相互依赖有相互制约的现象 50. 顶端优势——植物顶端在生长上占有优势并抑制侧枝或侧根生长的现象 51.光形态建成——光控制植物生长、发育和分化的过程
52.光敏色素——在植物体内存在着一种吸收红光和远红光并且可以互相转化的光受体蛋白,具有红光吸收型(Pr)和远红光吸收型(Pfr)两种形式,其中Pfr型具有生理活性,参与光形态建成、调节植物生长发育
53.光受体——是指植物体中存在的一些微量色素,能够感受到外界的光信号,并把光信号放大使植物做出相应的反应,从而影响植物的光形态建成
54. 向性运动——是由光、重力等外界因素刺激而产生决定运动方向的,生长引起的不可逆高等植物运动
55. 感性运动——是由外界刺激或内部时间机制而引起的、但不能决定运动方向的高等植物运动
56. 生理钟——又称生物钟,指植物内生节奏调节的近似24小时的周期性变化节律。
57. 春化作用——用低温促使植物开花的作用叫春化作用 58. 光周期现象——植物对白天和黑夜的相对长度的反应
59. 双重日长植物——花诱导和花形成两个过程很明显地分开,要求不同日常的植物
60. 识别反应——花粉落在雌蕊柱头上能否正常萌发并导致受精,决定于双方的亲和性,即它们之间的“认可”和“拒绝”称为识别反应
61. 蒙导花粉——亲和的花粉可使柱头不能识别不亲和的花粉,被称为蒙导花粉 62. 单性结实——有些植物的胚珠不经受精,子房仍然能继续发育成为没有种子的果实,称为单性结实 63. 休眠——种子在合适的萌发条件下仍不萌发的现象
64. 骤跃变型结实——指在成熟期出现呼吸跃变现象的果实。 65. 非骤变型果实——指在成熟期不出现呼吸跃变现象的果实 66. 后熟——种子在休眠期内发生的生理、生化过程
67. 层积处理——对一些蔷薇科和松柏科植物的种子,用湿砂将种子分层堆积在低温处1至3个月,经后熟才萌发的催芽技术
68. 衰老——衰老是植物生命周期的最后阶段,是成熟的细胞,组织,器官和整个植株自然地终止生命活动的一系列机能衰败过程
69. 脱落——脱落是指有机体发育过程中,在结构和生理功能方面出现进行性的衰退变化,其特点是有机体对环境的适应能力逐渐减弱,但不立即死亡 70. 逆境——又称胁迫,指对植物生存和生长不利的各种环境因素的总称
71. 抗逆性——植物对逆境的抵抗和忍耐能力,简称为抗性。抗性是植物对环境的一种适应性反应,是在长期进化过程中形成的。
72. 交叉抗性——植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不同逆境间相互适应作用,称为交互适应。
73.渗透调节——植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力,以维持正常细胞膨压的作用。
74.冻害——温度下降到零度以下,植物体内发生冰冻,因而受伤甚至死亡的现象
75.冷害——零度以上低温,虽无结冰现象,但能引起喜植物的生理障碍,使植物受伤甚至死亡的现象
76.逆境蛋白——由逆境因素和紫外线等诱导植物体内形成新蛋白质(酶)。 77.大气干旱——空气极度干燥,相对湿度极低,根系吸水赶不上蒸腾失水,因而发生水分亏缺现象。
78. 钙调素——一种耐热的球蛋白
79. 临界暗期——引起短日照植物或长日照植物成花反应的最低或最高暗期极限称为临界暗期
80. 短日植物——每日在短于一定临界日长的日照下才开花的植物
81. 衬质势——是细胞胶体物质亲水性和毛细管对自由水束缚而引起水势降低的值(以负值表示)
82. 代谢源——指叶子,它制造出光合产物并输送到其他器官
83. 生长的相关性——植物在生长过程中各部分间的相互制约与协调现象
1. 水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。把纯水的水势定义为零,溶液的水势值则是负值。 3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。 4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.根压:由于植物根系生理活动而促使液流从根部上升的压力。伤流和吐水现象是根压存在的证据。
6.自由水:与细胞组分之间吸附力较弱,可以自由移动的水。
7.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
8.束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。
9.衬质势: 由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。
10.吐水: 从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。 11.伤流: 从受伤或折断的植物组织伤口处溢出液体的现象。
12. 蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。 13.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
14.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用g·kg-l表示。
15.蒸腾系数:植物每制造1g干物质所消耗水分的g数,它是蒸腾效率的倒数,又称需水量。
16.抗蒸腾剂:能降低蒸腾作用的物质,它们具有保持植物体中水分平衡,维持植株正常代谢的作用。抗蒸腾剂的种类很多,如有的可促进气孔关闭。
17.吸胀作用: 亲水胶体物质吸水膨胀的现象称为吸胀作用。胶体物质吸引水分子的力量称为吸胀。
18.永久萎蔫系数:将叶片刚刚显示萎蔫的植物,转移至阴湿处仍不能恢复原状,此时土壤中水分重量与土壤干重的百分比叫做永久萎蔫系数。
19.水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。一般而言,植物的水分临界期多处于花粉母细胞四分体形成期,这个时期一旦缺水,就使性器官发育不正常。作物的水分临界期可作为合理灌溉的一种依据。
20.内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。
21. 植物的最大需水期:指植物生活周期中需水最多的时期。
22.小孔扩散律:指气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长或直径成正比的规律。气孔蒸腾速率符合小孔扩散律。
23.水孔蛋白: 存在在生物膜上的具有通透水分功能的内在蛋白。水通道蛋白亦称水通道蛋白。
三、
1、大量元素:在植物体内含量较多,占植物体干重达万分之一的元素,称为大量元素。植物必需的大量元素是:钾、钙、镁、硫、磷、氮、碳、氢、氧等九种元素。
2、微量元素:植物体内含量甚微,约占植物体干重的、600.001—0.00001%的元素,植物必需的微量元素是铁、锰、硼、锌、铜、钼和氯等七种元素,植物对这些元素的需要量极微,稍多既发生毒害,故称为微量元素。
3、生理酸性盐:对于(NH4)2SO4一类盐,植物吸收NH4+较SO4-多而快,这种选择吸收导致溶液变酸,故称这种盐类为生理酸性盐。
4、生理碱性盐:对于NaNO3一类盐,植物吸收NO3-较Na+快而多,选择吸收的结果使溶液变碱,因而称为生理碱性盐。
5、生理中性盐:对于NH4NO3一类的盐,植物吸收其阴离子NO3-与阳离子NH4+的量很相近,不改变周围介质的pH值,因而,称之为生理中性盐。
6、单盐毒害:植物被培养在某种单一的盐溶液中,不久即呈现不正常状态,最后死亡。这种现象叫单盐毒害。
7、平衡溶液:在含有适当比例的多种盐溶液中,各种离子的毒害作用被消除,植物可以正常生长发育,这种溶液称为平衡溶液。
8、离子载体:是一些具有特殊结构的复杂分子,它具有改变膜透性,促进离子过膜运输的作用。如缬氨霉素、四大环物等。
9、胞饮作用:物质吸附在质膜上,然后通过膜的内折而转移到细胞内的攫取物质及液的过程。
10、离子的主动吸收:又称主动运输,是指细胞利用呼吸释放的能量作功而逆着电化学势梯度吸收离子的过程。
11、离子怕被动吸收:是指由于扩散作用或其它物理过程而进行的吸收,是不消耗代谢能量的吸收过程,故又称为非代谢吸收。
12、固氮酶:固氮微生物中具有还原分子氮为氨态氮功能的酶。该酶由铁蛋白和钼铁蛋白组成,两种蛋白质同时存在才能起固氮酶的作用。
13、根外营养:植物除了根部吸收矿质元素外,地上部分主要是叶面部分吸收矿质营养的过程叫根外营养。
14、离子拮抗:在单盐溶液中加入少量其它盐类可消除单盐毒害现象,这种离子间相互消除毒害的现象为离子拮抗。
15、养分临界期:作物对养分的缺乏最敏感、最易受伤害的时期叫养分临界期。 16、再利用元素:某些元素进入地上部分后,仍呈离子状态,例如钾,有些则形成不稳定化合物,不断分解,释放出的离子(如氮、磷)又转移到其它需要的器官中去。这些元素就称为再利用元素或称为对与循环的元素。
17、诱导酶:又叫适应酶。指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。如水稻幼苗本来无硝酸还原酶,但如将其在硝酸盐溶液中培养,体内即可生成此酶。
18、生物固氮:微生物自生或与植物(或动物)共生,通过体内固氮酶的作用,将大气中的游离氮固定转化为含氮化合物的过程。
19、质外体:植物体内原生质以外的部分,是离子可自由扩散的区域,主要包括细胞壁、细胞间隙、导管等部分,因此又叫外部空间或自由空间。
20、共质体:指细胞膜以内的原生质部分,各细胞间的原生质通过胞间连丝互相串连着,故称共质体,又称内部空间。物质在共质体内的运输会受到原生质结构
的阻碍,因此又称有阴空间。 四、
1.光合作用:绿色植物吸收阳光的能量,同化CO2和H2O,制造有机物质,并释放O2的过程。
2.光合速率:指光照条件下,植物在单位时间单位叶面积吸收CO2的量(或释放O2的量)。
3.原初反应:指植物对光能的吸收、传递与转换,是光合作用最早的步骤,反应速度极快,通常与温度无关。
4.光合电子传递链:在光合作用中,由传氢体和传电子体组成的传递氢和电子的系统或途径。
5.PQ穿梭:在光合作用电子传递过程中,由质体醌在接合电子的同时,接合基质中的质子,并将质子转运到类囊体腔的过程。
6.同化力:在光反应中生成的ATP和NADPH可以在暗反应中同化二氧化碳为有机物质,故称ATP和NADPH为同化力。
7.光呼吸:植物的绿色细胞在光照下吸收氧气,放出CO2的过程。 8.荧光现象:指叶绿素溶液照光后会发射出暗红色荧光的现象。
9. 磷光现象:照光的叶绿素溶液,当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。这种发光现象称为磷光现象。 10.光饱和现象:在一定范围的内,植物光合速率随着光照强度的增加而加快,超过一定范围后光合速率的增加逐渐变慢,当达到某一光照强度时,植物的光合速率不再继续增加,这种现象被称为光饱和现象。
11.光饱和点:在一定范围内,光合速率随着光照强度的增加而加快,光合速率不再继续增加时的光照强度称为光饱和点。
12.光补偿点:指同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。
13.光能利用率:单位面积上的植物通过光合作用所累积的有机物中所含的能量,占照射在相同面积地面上的日光能量的百分比。 14. CO2饱和点:在一定范围内,光合速率随着CO2浓度增加而增加,当光合速率不再继续增加时的CO2浓度称为CO2饱和点。
15.CO2补偿点,当光合吸收的CO2量与呼吸释放的CO2量相等时,外界的CO2浓度。
16.光合作用单位:结合在类囊体膜上,能进行光合作用的最小结构单位。 17.作用中心色素:指具有光化学活性的少数特殊状态的叶绿素a分子。
18.聚光色素:指没有光化学活性,只能吸收光能并将其传递给作用中心色素的色素分子。聚光色素又叫天线色素。
19. 希尔反应:离体叶绿体在光下所进行的分解水并放出氧气的反应。
20.光合磷酸化:叶绿体(或载色体)在光下把无机磷和ADP转化为ATP,并形成高能磷酸键的过程。 21.光系统:由叶绿体色素和色素蛋白质组成的可以完成光化学转换的光合反应系统,称为光系统,植物光合作用有PSI和PSII两个光系统。
22. 红降现象:当光波大于685nm时,光合作用的量子效率急剧下降,这种现象被称为红降现象。
23. 双增益效应:如果用长波红光(大于685nm)照射和短波红光(650nm)同时照射植物,则光合作用的量子产额大增,比单独用这两种波长的光照射时的总和还要高,这种增益效应称为双增益效应
24.C3植物:光合作用的途径主要是C3途经的植物,其光合作用的初产物是甘油-3-磷酸
25. C4植物:光合作用的途径主要是C4途经的植物,其光合作用的初产物是C4二酸,如草酰乙酸。
26.量子产额:指每吸收一个光量子所合成的光合产物的量或释放的氧气的量,又称为量子效率。
27.量子需要量:指释放一分子氧或还原一分子二氧化碳所需要的光量子数。一般为8~10个光量子。
28.光合作用‘午睡’现象:在正午光照较强的情况下,有些植物的光合速率会急剧降低,甚至光合速率为零。这种现象称为光合作用‘午睡’现象。
五、
1.呼吸作用:指生活细胞内的有机物质,在一系列酶的参与下,逐步氧化分解,同时释放能量的过程。
2.呼吸速率:又称呼吸强度。以单位鲜重千重或单位面积在单位时间内所放出的CO2的重量(或体积)或所吸收O2的重量(或体积)来表示。
3.呼吸商:又称呼吸系数。是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。
4.呼吸底物: 用于呼吸作用氧化分解的物质.
5. 呼吸跃变: 指花朵、果实发育到一定程度时,其呼吸强度突然增高,尔后又逐渐下降的现象。
6.有氧呼吸:指生活细胞在氧气的参与 下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。
7.无氧呼吸:指在无氧条件下,细胞把某些有机物分解为不彻底的氧化产物。 8. 氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。 9. 巴斯德效应:指氧对发酵作用的抑制现象。
10.能荷调节: 能荷是指细胞中可利用的高能磷酸化合物的摩尔数与细胞中总的腺苷磷酸的比值,细胞中能荷高低对呼吸速率具有的调节作用称为能荷调节。 11.抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸。即在有氰化物存在的情况下仍能够进行其它的呼吸途径。
12.末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或
电子传递给氧,并形成H2O或H2O2的氧化酶类。
13.无氧呼吸熄灭点:又称无氧呼吸消失点,使无氧呼吸完全停止时环境中的氧浓度,称为无氧呼吸消失点。
14.呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。
15.戊糖磷酸途径:简称PPP或HMP。是指在细胞质内进行的一种葡萄糖直接氧化降解的酶促反应过程。
16.糖酵解:是指在细胞质内所发生的、由葡萄糖分解为丙酮酸的过程。
17.三羧酸循环:丙酮酸在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解生成CO2的过程。又称为柠像酸环或Krebs环,简称TCA循环。
18. P/O比:指呼吸链中每消耗1个氧原子与用去Pi或产生ATP的分子数。 1、类萜:由异戊二烯(五碳化合物)组成的,链状的或环状的次生植物物质。 2、酚类:是芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物。 3、生物碱:是一类含氮杂环化合物,一般具有碱性。如阿托品、吗啡、烟碱等。 4、次级产物:除了糖类、脂肪、核酸和蛋白质等基本有机物之外,植物体中还有许多其他有机物,如萜类、酚类、生物碱等,它们是由糖类等有机物代谢衍生出来的物质就叫次级产物。
5、固醇:是三萜的衍生物,它是质膜的主要组成,又是与昆虫脱皮有关的植物蜕皮激素的成分。
6、类黄酮:是两个芳香环被三碳桥连起来的15碳化合物,其结构来自两个不同的合成途径。
六、
1、共质体:是通过胞间连丝把无数原生质体联系起来形成一个连续的整体。 2、质外体:是一个开放性的连续自由空间,包括细胞壁、细胞间隙及导管等。 3、胞间连丝:是贯穿胞壁的管状结构物,内有连丝微管,其两端与内质网相连接。 4、压力流动学说:又叫集流学说,是德国人明希提出的。该学说认为从源到库的筛管通道中存在着一个单向的呈密集流动的液流,其流动动力是源库之间的压力势差。
5、韧皮部装载:指光合作用产物从叶肉细胞输入到筛分子一伴胞复合体的整个过程。
6、韧皮部卸出:是指装载在韧皮部的同化产物输出到接受细胞的过程。
7、代谢源:指制造并输送有机物质到其他器官的组织、器官或部位。如成熟的叶片。
8、代谢库:指植物接受有机物质用于生长、消耗或贮藏的组织,器官或部位。如正在发育的种子、果实等。 七、
1.细胞信号转导:是指偶联个胞外刺激信号(包括各种种内、外源刺激信号)与其相应的生理反应之间的一系列分子反应机制。
2.G 蛋白:全称为 GTP 结合调节蛋白。此类蛋白由于其生理活性有赖于三磷酸鸟苷(GTP )的结合以及具有GTP 水解酶的活性而得名。在受体接受胞间信号分子到产生胞内信号分子之间往往要进行信号转换,通常认为是通过G 蛋白偶联起来,故G 蛋白又被称为偶联蛋白或信号转换蛋白。
3.细胞受体:只存在于细胞表面或亚细胞表面组分中的天然物质,可特异地识别并结合化学信号物质—配体,并在细胞内放大、传递信号,启动一系列生化反应,最终导致特定的细胞反应。
4.第二信使:又称次级信使,由胞外刺激信号激活或抑制的具有生理调节活性的细胞因子,植物中的第二信使主要是cAMP、钙离子、DAG和IP3。
5.钙调素:是最重要的多功能Ca2+信号受体,为单链的小分子酸性蛋白,具有4个Ca2+结合位点。当外界信号刺激引起胞内Ca2+浓度上升到一定阈值,Ca2+与CaM构象改变而活化CaM,后者与靶酶结合,使其活化而引起生理反应。目前已知有十多种酶受Ca2+-CaM的调控。
6.第一信使:能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。
7.双信号系统:是指肌醇磷脂信号系统,其最大的特点是胞外信号被膜受体接受后同时产生两个胞内信号分子 ( IP 3 和 DAG ),分别激活两个信号传递途径,即 IP3 /Ca2+和 DAG/PKC 途径,因此把这一信号系统称之为“双信号系统”。
八、
1、植物激素:是由植物本身合成的,数量很少的一些有机化合物。它们能从生成处运输到其他部位,在极低的浓度下即能产生明显的生理效应,可以对植物的生长发育产生很大的影响。
2、植物生长调节剂:是由人工合成的,在很低浓度下能够调控植物生长发育的化学物质。它们具有促进插枝生根,调控开花时间,塑造理想株形等作用。 3、植物生长物质:是在较低浓度的情况下能对植物产生明显生理作用的化学物质,主要包括内源的植物激素与人造的植物生长调节剂。
4、三重反应:乙烯可抑制黄化豌豆幼苗上胚轴的伸长生长,促进其加粗生长,地上部分失去负向地性生长(偏上生长)。
5、激素受体:指能与激素特异地结合,并引起特殊的生理效应的物质。 6、自由生长素:指易于提取出来的生长素。
7.生长素极性运输:是指生长素只能从植物体的形态学上端向下端运输。
1、光形态建成:依赖光控制细胞的分化、结构和功能的改变,最终汇集成组织和器官的建成,就称为光形态建成。
2、 暗形态建成:暗中生长的植物表现出各种黄化特征,茎细而长,顶端呈钩状
弯曲,叶片小而呈黄白色。
3、光敏色素:植物体内存在的一种吸收红光—远红光可逆转换的光受体(色素蛋白)。
九、
1、种子寿命:种子寿命是种子从采收到失去发芽能力的时间。
2、组织培养:指在无菌条件下,分离并在培养基中培养离体植物组织(器官或细胞)的技术。
3、分化:指形成不同形态和不同功能细胞的过程。
4、脱分化:原已分化的细胞,推动原有的形态和机能,又回复到原有的无组织的细胞团或愈伤组织,这个过程称为脱分化过程。 5. 顶端优势:顶端在生长上占有优势的现象。
十、
1.单性结实:子房不经过受精作用而形成不含种子果实的现象,称为单性结实。 2.春化作用:低温促使植物开花的作用,称为春化作用。 3.长日植物:指日照长度大于一定临界日长才能开花的植物。 4.短日植物:指日照长度小于一定临界日长才能开花的植物。
5.光周期诱导:植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下,仍然可以长期保持刺激的效果,这种现象称为光周期诱导。
十一、
1.单性结实:不经受精作用而形成不含种子的果实。
2.呼吸骤变:指花朵、果实发育到一定程度时,其呼吸强度突然增高,尔后又逐渐下降的现象。
3.休眠:有些种子(包括鳞茎、芽等延存器官)在合适的萌发条件下仍不萌发的现象。
4.衰老:指一个器官或整个植株生理功能逐渐恶化,最终自然死亡的过程。
5.脱落:指植物细胞组织或器官与植物体分离的过程,如树皮各茎顶的脱落,叶、枝、花和果实的脱落。
十二、
1.逆境(environmental stress):对植物生存生长不利的各种环境因素的总称。逆境的种类可分为生物逆境、理化逆境等类型。
2. 避逆性:植物通过各种方式,设置某种屏障,从而避开或减小逆境对植物组织施加的影响,植物无需在能量或代谢上对逆境产生相应的反应,叫做避逆性。 3.耐逆性:植物组织虽经受逆境对它的影响,但它可以通过代谢反应阻止、降低或者修复由逆境造成的损伤,使其仍保持正常的生理活动。
4. 抗性锻炼:植物对环境的适应性反应是逐步形成的,这一形成过程,叫做抗性锻炼。
5.冷害(chilling injury):冰点以上低温对植物的危害。冷害主要由低温引起生物膜的膜相变与膜透性改变,造成新陈代谢紊乱引起的。 6.冻害(freezing injury):冰点以下低温对植物的危害。冻害主要由细胞间或细胞内发生结冰、生物膜和蛋白质结构被破坏引起的。
7.抗寒性:指植物在长期进化过程中所形成的,在生长习性和生理生化方面所具有的对冬季低温的一种特殊适应能力。
8. 抗寒锻炼:植物在冬季来临之前,随着气温的逐渐降低,体内发生了一系列的适应低温的生理生化变化,抗寒力就逐渐加强。这种提高抗寒能力的过程,叫做抗寒锻炼。
9. 巯基(-SH)假说(sulfhydryl group hypothesis):莱维特(Levitt)1962年提出植物细胞结冰引起蛋白质损伤的假说。他认为组织结冰脱水时,蛋白质分子逐渐相互接近,邻近蛋白质分子通过-SH氧化形成-S-S-键,蛋白质分子凝聚失去活性,当解冻再度吸水时,肽链松散,氢键断裂,但-S-S-键还保存,肽链的空间位置发生变化,破坏了蛋白质分子的空间构型,进而引起细胞的伤害和死亡。 10.抗冷性:植物对冰点以上的低温的适应能力叫抗冷性。
11. 抗旱性:指作物具有忍受干旱而受害最小,减产最少的一种特性。
12.生理干旱(physiological drought):由于土温过低、土壤溶液浓度过高或积累有毒物质等原因,妨碍根系吸水,造成植物体内水分亏缺的现象。 13.抗涝性:植物对水分过多的适应能力。
14.抗热性:指植物对高温(-般超过35℃)所造成的热害的适应能力。抗热性是抗旱性的组成之一。
15.抗盐性:植物对土壤盐分过高的适应能力叫抗盐性。 16盐害:土壤中可溶性盐类过多对植物的不利影响叫盐害。
17.抗病性:植物对病原微生物侵染的抵抗能力叫做植物的抗病性。
18.逆境蛋白(stress proteins):由逆境因素如高温、低温、干旱、病原菌、化学物质、缺氧、紫外线等所诱导植物体形成的新的蛋白质(酶)。 19.光化学烟雾(photochemical smog):工厂、汽车等排放出来的氧化氮类物质和燃烧不完全的烯烃类碳氢化合物,在强烈的紫外线作用下,形成一些氧化能力极强的氧化性物质,如O3、NO2、醛类(RCHO)、硝酸过氧化乙酰(peroxyacetyl nitrate,PAN)等。它们对植物有伤害作物。
20.避盐:有些植物以某种途径或方式来避免盐分过多的伤害。
21.耐盐:有些植物通过生理或代谢的适应来耐受已进入细胞的盐分。 22.大气干旱(atmosphere drought):空气过度干燥,相对湿度过低,使植物的蒸腾作用过强,根系吸水补偿不了失水,使植物体发生水分亏缺的现象。
23.土壤干旱(soil drought):因土壤中没有或只有少量的有效水,影响植物吸水,使植物体内水分亏缺引起永久萎焉的现象。
24.渗透调节(osmoregulation,osmotic adjusment):通过提高细胞液浓度、降低渗透势表现出的调节作用。 25.植保素(phytoalexin):寄主被病原菌侵入后产生的一类对病原菌有毒的物质。植保素大多是一些异类黄酮和萜类物质。
26.盐碱土(saline and alkaline soil):盐类以NaCl和Na2SO4为主的土壤称为盐土,盐类以Na2CO3和NaHCO3为主的土壤称为碱土,盐土中如含有一定量的碱土,这种盐土则被称为盐碱土。
27.胁变(strain):植物体受到胁迫后产生的相应变化,这种变化可表现在形态上和生理生化变化两个方面。据胁变的程度大小可分为弹性胁变和塑性胁变,前者指解除胁迫后又能复原,而后者则不能。
因篇幅问题不能全部显示,请点此查看更多更全内容