锂离子电池原理及工艺流程 一、 原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二、 工艺流程 三、 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊; d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全); c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯); e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点 a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低; d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸 a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路 7.短路 a. 料尘; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好); d. 卷绕不齐; e. 没包好; f. 隔膜有洞; g. 毛刺 8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下) 锂离子电池的容量在很大程度上取决于负极的锂嵌入量,其负极材料应满足如下要求:⑴锂的脱嵌过程中电极电位变化较小,并接近金属锂;⑵有较高的比容量;⑶较高的充放电效率;⑷在电极材料的内部和表面Li+均具有较高的扩散速率;⑸较高的结构、化学和热稳定性;⑹价格低廉,制备容易。目前有关锂离子电池负极材料的研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。 一般制备负极材料的方法如下:①在一定高温下加热软碳得到高度石墨化的碳;②将具有特殊结构的交联树脂在高温下分解得到硬碳;③高温热分解有机物和高聚物制备含氢碳。 碳负极材料要克服的困难就是容量循环衰减的问题,即由于固体电解质相界面膜(Solid electrolyte interphase,简称SEI)的形成造成不可逆容量损失。因此制备高纯度和规整的微结构碳负极材料是发展的一个方向。 电池基本知识及生产控制 一、电芯原理 锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示: 二、电芯的构造 电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。 根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压≤4 .2V,放电下限电压≥2.5V。 三、电芯的安全性 电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高( >4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。电位变化见下图: 在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制: 1.负极材料的处理 1)将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。 2)提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A 比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。 2.制浆工艺的控制 1)制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。 2)涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。 3)浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。 3.采用先进的极片制造设备 1)可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。 2)涂布机单片极板上面密度误差值应小于±2%,极板长度及间隙尺寸误差应小于2mm。 3)辊压机的辊轴锥度和径向跳动应不大于4µm,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。 4)分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。 4.先进的封口技术 目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(λ=1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲 合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素: 1)必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。 2)必须有配合精度高的适用于激光焊的电芯外壳及盖板。 3)必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的Al2O3(其熔点为2400℃)。 四、电芯膨胀原因及控制 锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因: 1.锂离子嵌入带来的厚度变化 电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。 2.工艺控制不力引起的膨胀 在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常 敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。 五、铝壳电芯与钢壳电芯安全性比较 铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验: 注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448。 第三节 锂离子电池保护线路(PCM) 由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言: 过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。 过放电保护: 过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。 当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误动作。 过放电保护及过充电保护IC主要生产厂家有:美上美(MITSUMI),精工,台湾富晶(DW01,FS301,302),理光,MOTOROLA等封装形式主要为SOT26,SOT6 过电流及短路电流 因为不明原因(放电时或正负极遭金属物误触)造成过电流或短路,为确保安全,必须使其立即停止放电。 过电流保护 IC 原理为,当放电电流过大或短路情况产生时,保护 IC 将启动过(短路)电流保护,此时过电流的检测是将功率 MOSFET 的 Rds(on) 当成感应阻抗用以监测其电压的下降情形,如果比所定的过电流检测电压还高则停止放电,运算公式为: V- = I × Rds(on) × 2(V- 为过电流检测电压,I 为放电电流)。 假设 V- = 0.2V,Rds(on) = 25mΩ,则保护电流的大小为 I = 4A。 同样地,过电流检测也必须设有延迟时间以防有突发电流流入时产生误动作。 通常在过电流产生后,若能去除过电流因素(例如马上与负载脱离),将会恢复其正常状态,可以再进行正常的充放电动作。 三、 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖板虚焊; d. 负极耳与盖帽虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液锂盐含量低; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全); c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯); e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点 a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低; d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸 a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路 7.短路 a. 料尘; b. 装壳时装破; c. 毛刺; d. 卷绕不齐; e. 没包好; f. 隔膜有洞; 8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下) 四、 各工序控制重点 (一) 配料: 1.溶液配制: a) PVDF(或CMC)与溶剂NMP(或去离子水)的混合比例和称量; b) 溶液的搅拌时间、搅拌频率和次数(及溶液表面温度); c) 溶液配制完成后,对溶液的检验:粘度(测试)\\溶解程度(目测)及搁置时间; d) 负极:SBR+CMC溶液,搅拌时间和频率。 2.活性物质: a) 称量和混合时监控混合比例、数量是否正确; b) 球磨:正负极的球磨时间;球磨桶内玛瑙珠与混料的比例;玛瑙球中大球与小球的比例; c) 烘烤:烘烤温度、时间的设置;烘烤完成后冷却后测试温度。 d) 活性物质与溶液的混合搅拌:搅拌方式、搅拌时间和频率。 e) 过筛:过100目(或150目)分子筛。 f) 测试、检验: 对浆料、混料进行以下测试:固含量、粘度、混料细度、振实密度、浆料密度。 (二)涂布 1.集流体的首检: a) 集流体规格(长宽厚)的确认; b) 集流体标准(实际)重量的确认; c) 集流体的亲(疏)水性及外观(有无碰伤、划痕和破损)。 2.敷料量(标准值、上、下限值)的计算: a) 单面敷料量(以接近此标准的极片厚度确定单面厚度); b) 双面敷料量(以最接近此标准的极片厚度确定双面的极片厚度。) 3.浆料的确认:是否过稠(稀)\\流动性好,是否有颗粒,气泡过多,是否已干结. 4.极片效果: a) 比重(片厚)的确认; b) 外观:有无划线、断带、结料(滚轮或极片背面)是否积料过厚,是否有未干透或烤焦,有无露铜或异物颗粒; 5.裁片:规格确认有无毛刺,外观检验。 (三)制片(前段): 1.压片: a) 确认型号和该型号正、负极片的标准厚度; b) 最高档次极片压片后(NO.1或NO.1及NO.2)的厚度、外观有无变形、起泡、掉料、有无粘机、压叠。 c) 极片的强度检验; 2.分片: a) 刀口规格、大片极片的规格(长宽)、外观确认; b) 分出的小片宽度; c) 分出的小片有无毛刺、起皱、或裁斜、掉料(正)。 3.分档称片: a) 称量有无错分; b) 外观检验:尺寸超差(极片尺寸、掉料、折痕、破损、浮料、未刮净等)。 4.烘烤: a) 烤箱温度、时间的设置; b) 放N2、抽真空的时间性效果(目测仪表)及时间间隔。 (四)制片后段: 1.铝带、镍带的长度、宽度、厚度的确认; 2.铝带、镍带的点焊牢固性; 3.胶纸必须按工艺要求的公差长度粘贴; 4.极片表面不能有粉尘。 (五)盖帽 1.裁连接片:测量尺寸规格、检查有无毛刺、压伤; 2.清洗连接片:检查连接片是否清洗干净; 3.连接片退火:检查有无用石墨粉覆盖,烤炉温度,放入取出时间; 4.组装盖帽:检查各种配件是否与当日型号相符,装配是否到位; 5.冲压盖帽:检查冲压高度及外观; 6.全检:对前工序员工自检检查的效果进行复核,防止不良品流入下一工序; 7.折连接片:检查有无漏折、断裂、有无折到位; 8.点盖帽:检查有无漏点、虚点、点穿; 9.全检:对前工序员工自检检查的效果进行复核,防止不良品流入下一工序; 10.套套管:检查尺寸、套管位置; 11.烘烤:烘烤温度、时间、烘烤效果。 (六)卷绕 1.各型号的识别、隔膜纸、卷尺的规格、钢(铝)壳的卷绕注意事项; 2.结存极片的标识状态; 3.点负极的牢固度(钢、铝壳);铝壳正极的牢固性、负极的外观; 4.绝缘垫片的放置; 5.折、压合盖帽(铝壳)注意杂物外露和铝壳外观的维护; 6.定盖工位:偏移度。 ?注意先下拉先生产。 (七)焊接 1.钢、铝壳电池焊接时注意沙孔; 2.焊接铝壳的调试、焊接时抽查的测试; 3.检漏工位; 4.打胶。 ?注意先下拉先生产。 (八)注液 1.各种型号注液量; 2.手套箱内的湿度和室内湿度; 3.电池水分测试及放气和抽真空时间; 4.烘烤前电池在烤箱放置注意事项; 5.烘烤12小时后电池上下层换位; 6.电池注液前后的封口。 (九)检测 1.分容、化成参数的设置; 2.化成时电解液流出员工有没有及时擦掉; 3.监督生产部新员工的操作; 4.注液组下来的电芯上注液孔是否有胶纸脱落; 5.各种实验电池是否明显标识区分; 6.提前亮灯的点要查明原因; 7.爆炸后该点的校对; 8.钢、铝壳柜的区分; 9.封口时哪些型号要倒转来挤压 10.封口挤压是否使铝电芯变形; 11.封口后上否及时清洗; 12.夹具头是否清洁,是否有锈蚀; 13.连接电脑的柜子爆炸后电压的查询,该点电压电流曲线的情况汇的; 14.搁置、老化和封口区的环境温湿度。 (十)包装 1.对有的客户抱怨过容量低的要加2分钟容量; 2.对天宇这个客户要控制尺寸的下限; 3.型号电池更改时是否清理整条拉,防止混料; 4.检出的不良品是否用红色周转盒子装,是否明显标识; 5.订单上有特别要求的是否得到员工的理解和执行; 6.喷码内容是否正确,喷码方向和位置是否正确; 7.压板和铆钉上是否有胶; 8.检测仪器是否在有效期内,防止失准仪器在线上使用(针对所有工位)。 化学电源的组成 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、 电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1) 组成电池的电动势高; 2) 电化学活性高,即自发进行反应的能力强; 3) 重量比容量和体积比容量大; 4) 在电解液中的化学稳定性高; 5) 具有高的电子导电性; 6) 资源丰富,价格便宜。 2、 电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1) 稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小; 2) 比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、 隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1) 在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2) 离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3) 应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4) 材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 三、 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i.卷芯超厚(未烘干或电解液未渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖板虚焊; d. 负极耳与盖帽虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液锂盐含量低; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水); b. 未化成好(SEI膜未形成安全); c. 客户的线路板漏电(指客户加工后送回的电芯); d. 客户未按要求点焊(客户加工后的电芯); e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点 a. 未化成好(SEI膜不完整、致密); b. 烘烤温度过高→粘合剂老化→脱料; c. 负极比容量低; d. 正极附料多而负极附料少; e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸 a. 分容柜有故障(造成过充); b. 隔膜闭合效应差; c. 内部短路 7.短路 a. 料尘; b. 装壳时装破; c. 毛刺; d. 卷绕不齐; e. 没包好; f. 隔膜有洞; 8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下) 好象是那一本书上提到过,具体是哪一本我忘记了。说的好象是EC在石墨表面上发生分解反应生成致密的碳酸锂膜,该膜可以使锂离子通过而嵌入石墨层中或从石墨层中脱嵌,而阻止电解液嵌入石墨层中,从而有利于循环性能的提高。具体是在什么电位下就开始形成solid electrolyte interface,我忘记了,有兴趣的话可以自己去找书查一下。 锂离子电池设计的一些物理参数: 负极片: 集电极:铜箔,厚度10-12um 膜材料配比:石墨/super-C//pvdf-761/=90/1/9 石墨比容量:320-340mAh/g 负极总容量比正极总容量多不大于10% 单层膜厚:65um 压实密度:1.5-1.6g/cm3, 面密度:8.5-9mg/cm2 容量密度:3mAh/cm2 正极: 集电极:铝箔,厚度18um 膜材料配比:LiCoO2/super-C/KS-6/pvdf761/=88/4/2/6 LiCoO2比容量:140mAh/g 单层膜厚:60um 压实密度:4g/cm3, 面密度:24mg/cm2 容量密度:3mAh/cm2 隔膜:celgard ,小型电池为25um; 动力电池为35-45um 电解质液:EC/DEC/EMC/DMC/ 1M LiPF6 电解液加入量 按每320mAh加1克电解液; 成品电池折拆分析 1、 正极暗红色不一定是铜被电镀了。 2、负极暗红色,在正常充满电或半充电状态,当负极片干了以后,呈安红色为正常现象。如果是在无电情况下,则电池不正常。 3、负极表面有银白色金属光泽物质:A、你这个原因也是有的,但也可能是上料不均匀造成的,极片有毛刺,造成微短路电池也会产生此现象,隔膜质量不行,厚度不均匀同样存在此现象;B、极耳处,是为枝晶,是由于极耳未焊牢固所致;C、电解液渗透确实存在,但也有可能为原材料有颗粒或什么的原因,造成上料不均匀所致;D、那就是电池本身存在很大的问题,在整个制作过程可能存在问题,压实密度高也是原因之一; 4、负极片上下边缘1cm左右颜色为暗黑色,是由于你们的制程和材料体系有问题,你们现在的负极片只有与正极片相对应的负极区域发挥了容量,而多出部分没有发挥容量,必须改进你们制程及材料体系;靠内部为红黄色,中心位置为银白色,在300个循环以后,国内很多厂家都这样,均不同程度上会出现这个现象。电解液渗透问题当然也是其中之一了, 5、估计是水分过多,除水工序正常难道就不会出现这个情况吗?要是电解液本身水分超标了。 tiangang1999@163.com(高手邮件地址,可请教) 初涉锂离子,有很多东西不懂。 请问一下 如何计算电池材料的氯纶容量值??比如氧化亚铜的理论容量值为多少?、怎么计算?? C=26.8nm/M,n是电子数,m是活性物质质量,M是活性物质的分子量 电池的化成,电池的化成,有的采用常温化成,有的采用常温化成,有的采用高温化成,有的采用高温化成,这两种化成各有什么优缺点?这两种化成各有什么优缺点?主要区别应该是SEI膜的厚度和致密程度吧,高温化成形成的SEI较厚但不致密,消耗的锂比较多,常温或低温形成的较薄切致密,《电池》杂志上有一篇文章就是讲高低温化成的,可以参考一下 偶尔此配方,大家一起来研究! 负极配方:CMS:CMC:SBR:Super-P=94.5:2.25:2.25:1 电解液:1M-LiPF6 EC/DMC/EMC 负极设计比容量:300mAh/g 正极设计比容量:140mAh/g 充放电制度:1)恒流充电(1C,4.2V) 2)恒压充电(4.2V,20mA) 3)静置(10min) 4)恒流放电(1C,3.0V) 5)静置(10min) 6)循环(350周) 聚合物在溶剂中的溶解要遵循三原则(极性相似原则,溶剂化原则,内聚能密度相近原则),此三原则结合聚合物和溶剂的“溶度参数”值,是选择聚合物良溶剂的依据。PVDF/NMP原本是很好的聚合物/溶剂搭配,但NMP是高极性溶剂,与水的亲和力很好,所以极易吸潮,随着NMP中水份含量的增加,形成的NMP/水混合溶剂的“溶度参数”、极性、溶剂化能力等都发生漂移,而PVDF的相应值并无变化,PVDF/NMP粘合剂溶液体系随含水量的增加,渐渐变得不稳定,含水量达一定值时,PVDF可以从溶液中析出,在这一过程中溶液的性质,包括粘度、粘结性能等都会产生变化。向PVDF/NMP溶液中滴加水,局部形成不良溶剂环境,必会有PVDF析出。 不同的配料工艺以和相应的配方相结合,我这里提供了一个普通配方,然后大家继续讨论: LiCoO2:92% 导电石墨:2.5% 导电剂:2.5% PVDF:3.0% 我们的配方是正极活性材料80%,乙炔黑10%,PVDF10%。很多国外的文献也是这样的,不过不知道是否适合你们企业使用 现在配方也算机密?都已经是公开的秘密了,没什么秘密可言了,我可以告诉你呀! 钴酸锂94% 导电剂1% 导电剂2 % PVDF 3% 负极表面的SEI膜大致可以认为是电解液的有机溶剂被还原分解所得到的不溶性产物附着在电极表面的结果,不同的负极材料会有一定的差别,但大致认为是有:碳酸锂,烷基酯锂,氢氧化锂等组成,当然也有盐的分解产物,另外还有一些聚合物等。一般认为对于金属锂,负极在首次嵌锂时形成SEI膜,形成电压为1.5V开始(相对于金属锂),在0.8V附近大量形成,到0.2V左右基本完成。另外研究表明,首次嵌锂时为SEI膜形成的主要步骤,后序5周内都有SEI膜的形成过程,但量很少。此外SEI膜并非一成不变,在充放电过程中会有少许的变化,主要是部分有机物会发生可逆的变化。此外不同的电流密度,不同的电极表面所形成的SEI膜的组成少有差别。 正极表面的SEI膜少,以前关注很少,目前好像关注度在上升。有一种观点认为是电解液的氧化产物沉积的结果,另一种观点是由于负极表面的SEI膜部分溶解后在正极表面沉积的结果。相对来说,电解液在正极表面氧化沉积的证据不多,当然也不排除是由于量少而目前的仪器精度无法达到的情况 为什么负极要用铜箔而正极要用铝箔为什么负极要用铜箔而正极要用铝箔 1、 采用两者做集流体都是因为两者导电性好,质地比较软(可能这也会有利于粘结),也相对常见比较廉价,同时两者表面都能形成一层氧化物保护膜。 2、铜表面氧化层属于半导体,电子导通,氧化层太厚,阻抗较大;而铝表面氧化层氧化铝属绝缘体,氧化层不能导电,但由于其很薄,通过隧道效应实现电子电导,若氧化层较厚,铝箔导电性级差,甚至绝缘。一般集流体在使用前最好要经过表面清洗,一方面洗去油污,同时可除去厚氧化层。 3、正极电位高,铝薄氧化层非常致密,可防止集流体氧化。而铜箔氧化层较疏松些,为防止其氧化,电位比较低较好,同时Li难与Cu在低电位下形成嵌锂合金,但是若铜表面大量氧化,在稍高电位下Li会与氧化铜发生嵌锂发应。AL箔不能用作负极,低电位下会发生LiAl合金化。 4、集流体要求成分纯。AL的成分不纯会导致表面膜不致密而发生点腐蚀,更甚由于表面膜的破坏导致生成LiAl合金。 极片重量为 活性物质重量 加 基片(铝或者铜)重量, 正极按理论设计极片重量减去基片(铝密度2.7,铜8.9) 后的重量,得到活性物质重量,活性物质重量乘以140mAh/g(钴酸锂的),得到设计的多少mAh容量,负极容量按正极的1.05-1.1倍计算,方法一样,负极按300-330mAh/g计算.无参考文献,在脑袋里面 我从一位老师那里得来了一个公式: 锂离子电池理论容量=(厚度-2*壁厚)*(宽度-2*壁厚)*(长度-2*壁厚)/正负极加隔离膜厚度的估算值参数/100*正极设计的涂布密度参数*容量比 其中: 0.0244 是正极设计的涂布密度,其实都差不多的 0.45是正负极加隔离膜厚度的估算值参数 140容量比。 但是按上计算,063048的理论容量则只有555毫安时(厚按6.3计算),这个容量只能作废品处理了,哈哈。 (6.3-0.35*2)*(30-0.35*2)*(48-0.35*2)/0.45/100*0.0244*140=555 我不知道问题出在哪个地方,请教一下各位专家指教 SEI膜不重要???你不是做电池的吧?电解液和碳负极的相容性问题,不同的电解液有不同的负极去匹配。 一般来说,天然石墨包覆的负极,不可逆容量要大一点。mcmb要好一点,这是我实验的结果。还有一个,SEI膜的成膜电位是1.2~0.8V(vs Li/Li+),嵌锂电位是0.25~0v,这个电位中嵌入的锂才是可逆的。如果能让SEI膜在更高的电位下形成,它能阻止溶剂的进一步还原,减少不可逆容量,也就是在首次充电曲线中不可逆容量的极化比较大,容易下降到嵌锂平台,这样形成的可逆容量要高。SEI膜对电池的循环性能有至关重要的作用,没有良好的SEI膜,每次循环都有较大不可逆容量损失,这样的电池通常可以从电解液吸水,或电池内部存在结晶水时可以看出来。 电池常识100问100答 11、什么是电池的容量? 电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh)。 12、什么是电池内阻? 是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工艺、电池结构等因素的影响。是衡量电池性能的一个重要参数。注:一般以充电态内阻为标准。测量电池的内阻需用专用内阻仪测量,而不能用万用表欧姆档测量。 13、什么是开路电压? 是指电池在非工作状态下即电路无电流流过时,电池正负极之间的电势差。一般情况下,Li-ion充满电后开路电压为4.1-4.2V左右,放电后开压为3.0V左右,通过电池的开路电压,可以判断电池的荷电状态。 14、什么是工作电压? 又称端电压,是指电池在工作状态下即电路中有电流过时电池正负极之间电势差。在电池放电工作状态下,当电流流过电池内部时,不需克服电池的内阻所造成阻力,故工作电压总是低于开路电池,充电时则与之相反。Li-ion的放电工作电压在3.6V左右。 15、什么是放电平台? 放电平台是恒压充到电压为4.2V并且电电流小于0.01C时停充电,然后搁置10分钟,在任何们率的放电电流下下放电至3.6V时的放电时间。是衡量电池好坏的重要标准。 16、什么是(充放电)倍率?时率? 是指电池在规定的时间内放出其额定容量时所需要的电流值,它在数据值上等于电池额定容量的倍数,通常以字母C表示。如电池的标称额定容量为600mAh为1C(1倍率),300mAh则为0.5C,6A(600mAh)为10C.以此类推. 时率又称小时率,时指电池以一定的电流放完其额定容量所需要的小时数.如电池的额定容量为600mAh,以600mAh的电流放完其额定容量需1小时,故称600mAh的电流为1小时率,以此类推. 17、什么是自放电率? 又称荷电保持能力,是指电池在开路状态下,电池所储存的电量在一定条件下的保持能力。主要受电池制造工艺、材料、储存条件等因素影响。是衡量电池性能的重要参数。 注:电池100%充电开路搁置后,一定程度的自放电正常现象。在GB标准规定LI-ion后在20±2℃条件下开条件下开路搁置28天。可允许电池有容量损失。 18、什么是内压? 指电池的内部气压,是密封电池在充放电过程中产生的气体所致,主要受电池材料、制造工艺、电池结构等因素影响。其产生原因主要是由于电池内部水分及有机溶液分解产生的气体于电池内聚集所致。 高倍率的连续过充,会导致电池温度升高、内压增大,严重时对电池的性能及外观产生破坏性影响,如漏液、鼓底,电池内阻增大,放电时间及循环寿命变短等。 Li-ion任何形式的过以都会导致电池性能受到严重破坏,甚至爆炸。帮Li-ion在充电过程中需采用恒流恒压充电方式,避免对电池产生过充。 19、为什么电池要储存一段时间后才能包装出货? 电池的储存性能是衡量电池综合性能稳定程度的一个重要参数。电池经过一定时间储存后,允许电池的容量及内阻有一定程度的变化。经过了一段时间的储存,可以让内部各成分的电化学性能稳定下来,可以了解该电池的自放电性能的大小,以便保证电池的品质。 20、为什么要化成? 电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成,电池粉有经过化成后才能体现真实性能。 21.什么是分容? 电池在制造过程中,因工艺原因使得电池的实际容量不可能完全一致,通过一定的充放电制度检测,并将电池按容量分类的过程称为分容。 22.什么是压降? 电池按定性充电至80%以上,测量其电池空载电压。5W/2W电池 作为负载连接电池正负极端开关作为电池的断路,通路的装置进行串联。打开开关后5秒电压下降不大于0。4V,为合格主要为测试电池负载性能。 23.什么是静态电阻? 即放电时电池内阻 24.什么是动态电阻? 即充电时电池内阻。 25.什么是电池的负载能力? 当电池的正负极两端连接在用电器上时,带动用电器工作时的输出功率,即为电池的负载能力。 26,什么是充电效率?什么是放电效率? 充电效率是指电池在充电过程中所消耗的电能转化成电池所能储蓄顾的化学能程度的量度。主要受电池工艺,配方及电池的工作环境温度影响,一般环境温度越高,则充电效率要低。 放电效率是指在一定的放电条件下放电至终点电压所放出的实际电量与额定容量之比,主要受放电倍率,环境温度,内阻等到因素影响,一般情况下,放电倍率越高,则放电效率越低。温度越低,放电效率越低。 27.目前常见的各种可充电电池之间有什么区别? 目前镍镉,镍氢,锂离子充电电池大量应用于各种便携式用电设备(如笔记本电脑,摄像机和移动电话等到)中,每种充电电池都具自已独特的化学性质。镍镉和镍氢电池之间主要差别在于:镍氢电池能量密度比较高。与相同型号电池对比,镍氢电池容量是镍镉电池的二倍。这意味着在不为用电设备增加额外重量时,使用镍氢电池能大大地延长设备工作时间。镍氢电池另一优点是;A大大减少了处镉电池中存在的:“记忆效应”问题,从而使得镍氢电池可更方便地使用。镍氢电池比镍镉电池更环保,因为它内部没有有毒重金属元素。 Li-ion也已经快速成为便携设备的标准电源,Li-ion能提供和镍氢电池一样的能量,但在重量方面则可减少大约35%,这对于旬摄像机和笔记本电脑之类的用电设备来说是至关重要的。Li-ion完全没有“记忆效应”和不含有毒物质的优点也是使它成为标准电源的重要因素。 32、Ni、Cd、NiMH、Li-ion各技术参数比较。 电池类型 项目 镍镉充电电池 镍氢充电电池 锂离子充电电池 1.2 1.2 1.2 3.6 重量比能量 50 65 105-140 体积比能量 150 200 300 充放电寿命 500 500 1000 自放电率(%) 25-30 30-35 6-9 有无记忆效应 有 无 无 有无污染 有 无 无 注:充电速率均为1C 33、目前在使用和研究的“绿色电池”有哪些? 新型绿色环保电池是指近年来已经投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的锂离子蓄电池、金属氢化物镍蓄电池和正在推广使用的无汞碱性锌锰电池以及正在研制开发的锂或锂离子塑料蓄电池、燃烧电池、电化学储能超级电容器都属于新型绿色环保电池的范畴。此外,目前已经广泛应用的利用太阳能进行光电转换的太阳电池。 34、什么电池将会主宰电池市场? 随着照相机,移动和无绳电话,笔记本电脑,带图像,声音的多媒体设备在家用电器中占据越来越重要的位置,与一次电池相比较,二次电池即可充电式电池也大量的应用到这些领域中。而二次充电电池将向体积小,重量轻,容量,智能化的方向发展。 35、什么是锂离子蓄电池? 是指以锂离子为反应活性物质的可充式电池,当电池放电到终止电压后能够再充电,以恢复到放电前的状态。 36、锂离子蓄电池的工作原理? 放电时,锂与碳的相嵌化合物中的锂,从负极溶解形成锂离子到电解液中,穿过电解液并在正极晶体中嵌入形成嵌入化合物.充电时,在正极嵌入的锂离子重新回到电解液中,然后在负极上与碳形成嵌入化合物,周而复始. 37、锂离子蓄电池与镍/镉、镍/氢、铅酸蓄电池相比有哪些优点? 比能量高,自放电率低,高低温性能好和充放电寿命长。 38、何为电池的平均电压? 电池放电时,从开始到放电终止时的电压平均值。 39、何为电池的能量密度? 指电池的单位体积所含的电能。 40、何为电池的容量? 指电池内的活性物质参加电化学反应所能放出的电能称为电池的容量。 41、何为电池的设计容量? 根据电池内所含活性物质的量,从电化学理论计算电池的容量称为设计容量。 42、何为电池额定容量? 指电池经设计后,经电池制程过程的影响,电池所能达到容量称为额定容量。 43、锂离子蓄电池的工作温度范围? 充电 -10—45℃ 放电 -30—55℃ 44、何为电池的倍率放电? 指放电时,放电电流(A)与额定容量(A•h)的倍率关系表示。 45、何为电池的小时率放电? 按一定输出电流放完额定容量所需的小时数数,称为放电时率。 46、锂离子蓄电池由那些原材料组成? 正极活性物质,负极活性物质,集流片,隔膜,电解液,外壳等材料组成。 47、锂离子蓄电池型号与电池的那些特征有关? 电池的外形长、宽、高及电池的容量。 48、影响锂离子电池循环性能的两个最重要的因素是什么? 活性物质的性质和杂质的种类、含量。 49、如何在生产过程中控制电池内部的水份? 1、 作好防潮、防湿处理。 2、 缩短操作时间,减少极片在空气中暴露时间。 3、 合理正确地进行烘烤作业。 4、 尽量在干燥环境下进行作业。 50、锂离子蓄电池的活性正极材料是什么? 锂盐;如钴酸锂,锰酸锂,镍酸锂等。 51、锂离子蓄电池的活性负极材料是什么? 石墨粉 52、电极材料为何要加入导电剂? 在电池工作时,电池的活性物质无论充放电都不会溶解在电解液中,为加强活性物质与网栅、集流片的接解导电性,而加放导电剂。 53、锂离子蓄电池的电解液的组成是什么? 常用的为六氟磷酸锂,四氟磷酸锂(LiPF6、LiClO4)等。 54、配料的目的是什么? 使活性物质分散均匀,便于拉浆均匀,上浆量恒定。 55、请简述配料的工艺流程。 56、正、负极片拉浆的三个基本参数。 拉浆温度、速度、敷料量。 57、如何控制极片的敷料量? 根据正负极浆料的固含量、比重调节拉浆机机头刀具间隙,控制拉浆的厚度,以达到控制。 58、如何头判定拉浆过程中极片的质量好坏。 极片表面平整、光滑、敷料均匀、附着力好、干燥,不脱料、不掉料、缺料、无积尘、无划痕、无 气泡的极片为好的极片,有缺陷的为不好的极片。 59、正、负极片裁片的主要的设备。 铡纸刀、剪板机。 60、正、负极片的主要注意事项。 1、 检查刀口有无毛刺、不平,作业时注意用刀的安全。 2、 正负极裁片用刀不可混用。 3、 在裁片过程中随时检查极片的质量,将不合格的分档分开,不可混淆放置。 4、 裁完的片经检查后极时转入以后的工序作业中。 61、正、负极正烘烤的目的是什么? 除去极片内的水份和有机溶剂。 62、正、负极片压片的目的? 使活性物质与网栅及集流片接触紧密,减小电子的移动距离,降低极片的厚度,增加装填量,提高电池体积的利用率。从而提高电池的容量。 63、压片厚度对电池性能有什么影响? 压片厚度太厚时,容易使电池内活性物质量减少,单位体积的活性物质量的减少和极化电位的增大,从而造成电池的容量降低。 压片厚度太薄时,容易造成电池内的活性物质量增加,极片表面有效面积减小,从而造成活性材料的浪费和大电流的困难。 64、极片称重的目的是什么? 准确了解和掌握极片的敷料量。 65、配片的目的是什么? 使正负极片上的活性物质的量比例保持一致性。 66、为什么要进行刷片操作? 清除极片上的积尘,积料,毛刺等。 67、正极片采用什么极耳? 采用铝带极耳。 68、负极片采用什么极耳? 采用镍带极耳。 69、焊接极耳的设备? 正极用超声波焊机,负极用点焊机。 70、卷绕车间的湿度对电池质量有什么影响? 卷绕房内的湿度大时,极片吸水量大,增加了极片的水份含量,在电池中产生气体量增加,使电池的内压增加,危害电池的安全性能。水份的增加多消耗电池中的活物质,使电池容量下降。湿度小反之 71、卷绕车间中空调机和除湿系统的作用? 保持室内的温度恒度,减小室内的湿度,以提高电池的性能。 72、卷绕车间是否可用水擦地板? 不可以 73、卷绕电池芯的主要注意事项? 1、 极片与隔膜纸铺平对齐。用手按住极片与隔膜纸时,用力大小适中均匀。电池芯卷绕松紧适当。 2、 注意极片上有无划痕、掉料、缺料、气孔、起泡等不良及隔膜纸有无不良,如有作废品处理。 3、 卷绕时注意手脚的谐调性,不被卷针划伤手。 73、电池芯贴胶纸的目的和位置? 电池芯贴纸的位置在电芯卷绕成型后不变形。底部贴胶纸防止电芯内的正极片底部与电池外壳接触电池造成短路。侧面贴纸使电芯卷绕成型后不变形。底部贴胶纸防止电芯内的正极片底部与电池外壳接触造成电池短路。 74、将极耳焊接到盖板上采用那些设备? 超声波、对焊机。 75、电池芯电阻要求? 大于20MΩ 76、电池芯的电阻达不到要求怎么办? 返修 77、为何极耳也要贴胶纸? 增加牢固性和防止极耳接触产生短路。 78、电池盖板在使用前需要做那些检验? 外形尺寸、形状、厚度、绝缘怀、密封性、耐腐蚀性、材持等项目的检验。 79、电池盖板所能承受的最大压力是多少? 0.4Mpa 80、如何防止电池漏液? 防止电池漏液应做好以下几方面的工作: 1、 焊接电池外壳与盖帽时,应焊接牢固、密封,焊接无漏焊、虚焊,焊缝无裂缝、裂口等不良。 2、 钢珠封口时,钢珠大小适当,钢珠材质与盖帽材质相同。焊接无裂口、裂缝并且焊接牢固。 3、 盖帽的正极柳接紧密,无间隙,并且绝缘密封垫弹性适当,耐腐蚀,不易老化。 81、如何在现有条件下防止未封口电池在车间吸水? 1、 作业电池应少量多次。缩短电池在空气中暴露时间。 2、 作业完毕的电池及时转送到下一工序。尽量缩短电池在制程中的停滞时间。 82、干燥房的湿度要求? 相对湿度在6%以下。 83、干燥房的湿度对电池的性能有什么影响? 湿度增加使电池芯的吸水量增大,使电池的容量下降,内压增加。 84、如何尽量防止湿气进入干燥房? 少进少出,少开门,干燥房的门不能同时打开。 85、你认为干燥房可以用水擦地板吗? 不可以。 86、电池在注液前需要做那些处理? 涂胶和真空烘烤处理。 87、电池在注液前为何要进行真空烘烤? 尽量除去电芯内的所含的水份和溶剂。 88、电池在注液前为何要称重? 以便准确计算注液量多少。 89、电池注液方法? 用手动注液机或自动注液机进行注液操作。 90、如何检验电池是否注满电解液? 用真空抽吸测试,在注液口上用真空吸时,有电解液被抽上表示已满,没有表示没满 91、电解液中的LiOF6的作用? 导电的电解质。 92、电解液中的LiPF6的浓度? 1mol/L 93、电解液中溶剂的作用? 溶解电解质,使电解质离子化。 94、电解液的电导率范围? 8×10-3Ω-1 95、电导率对电池工作电流的影响? 电导率影响倍率放电率,和电池的内阻,和电池的电压。 96、电池的内阻受那些因素影响? 电解液的电导率,电池的外壳材料性能,极片的导电率及极耳材料的截面积。电池焊接的质量。 97、电池的容量受那些因素影响? 正负极材料的特征的性能及材料的种类、型号和活性物质的量。 正负极活性物质的正确比例。 电解液的浓度和种类。 生产制程过程。 98、你认为如何在电池生过程中控制电池内的水份? 在生产制程中严格控制环境的湿度以及加强电芯的烘烤控制电池的水份。 99、电池在带电时可否用表测量电阻? 可以 100、化成机在化成大容量电池时应该注意什么问题? 注意电池的总功率是否超过化成机的功率。 就目前国际标准电液lipf6体系而言: 1M lipf6 EC:DMC 1:1 RT(9ms) 低温性能差,-10℃EC结晶 1M lipf6 EC:DEC 1:1 低温略好 挥发性气体 对锂不稳定 改进方向:在不影响碳电化学性能条件下,三元体系或者四元体系 例如:1M lipf6 EC:DEC:DMC 1:1:1 (SONY) 等等 lipf6体系优点:对铝稳定、电导率高、SEI容易形成...... 缺点:溶剂中80度分解、水解..... 总体上说,各厂家针对负极材料不同的会选择合适配比的电解液配方. 电解液与负极在形成SEI时得到质量好的SEI同时气体产生量较少,有没有精通的!?闭口 化成,呵呵,保密 添加剂的种类大体有......不过不是万能的,看使用的目的,如果连目的都不清楚,还是不用的好 Role of Li-ion Battery Electrolyte Reactivity in Performance Decline and Self –Discharge Steven E. Sloop, John B. Kerr, and Kim Kinoshita Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 62-203 Berkeley, CA 94720 The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates such as dimethyl carbonate and ethylene carbonate respectively.1, 2 During battery operation, the anion plays a critical role in the formation of the solid electrolyte interphase (SEI) layer, and the stability of the Li salt is crucial. For example, perchlorate or nitrate salts may be explosive when mixed with organic solvents.3 Hexafluorophosphate (PF6-) salts can produce PF5 gas, 4 a strong Lewis Acid.5 Similar reactions have been observed for LiAsF6.6 There is evidence to suggest that LiPF6 solutions in trioxane give cleavage of ether linkages.7 Studies of liquid electrolytes have addressed the thermal instability of LiPF6 solutions,8 but the role of PF5 in the reaction with carbonate electrolytes for Li-ion batteries has only recently been studied9. The purpose of this report is to explore further the reactivity of PF5 and EC/linear carbonates to understand the thermal and electrochemical decomposition reactions of LiPF6 in carbonate solvents and how these reactions lead to the formation of products that impact the performance of the battery. The behavior of other salts such as LiBF4 and LiTFSI are also examined. Solid LiPF6 is in equilibrium with solid LiF and PF5 gas (1) LiPF6 (s) LiF(s) + PF5 (g) The reaction temperature and the pressure of PF5 gas determine the equilibrium position. Removal of PF5 gas consumes LiPF6 and produces LiF. For a LiPF6 solution, the analogous equilibrium exists. Because LiF is insoluble, only the concentration of LiPF6 and PF5 determine the equilibrium position. (2) LiPF6 (sol) LiF (s) + PF5 (sol) In the electrolyte, the equilibrium can move toward products as PF5 reacts with the solvents. The Lewis acid property of the PF5 induces a ring-opening polymerization of the EC that is present in the electrolyte. The polymerization of ethylene carbonate by treatment with Lewis acid initiators is well known10 and can lead to PEO-like polymers. The polymerization is endothermic until 180oC and is driven by CO2 evolution. Above this temperature the polymerization becomes exothermic and leads to a violent decomposition. The PEO-like polymers also react with the PF5 to yield further products that may be soluble in the electrolyte or participate in SEI formation in real cells. GPC analysis of the heated electrolytes indicates the presence of material with M.Wt.’s up to 5,000. Further results on the polymerization reactions and further reactions with PF5 will be reported. The same analyses show the formation of transesterification products but the rate of production of these products do not account for the loss of EC. This is observed with EC/DMC, EC/DEC and EC/EMC mixtures and the appropriate transesterification products are observed for each solution. Similar products are observed for LiBF4 and LiAsF6 although it is noted that the reactivity of LiPF6 is considerably greater at temperatures above 50oC. No reactivity is observed with LiTFSI or with no salt present at any temperature up to 85oC. The transesterification and polymer products are observed in the electrolytes of cycled and aged Li-ion cells. The generation of polymers is accelerated by the production of acid species at the electrodes as well as by basic species formed during the formation cycle. Basecatalyzed polymerization of EC is also well known. Formation of polymer materials which are further crosslinked by reaction with acidic species and lead to degradation of the transport properties of the electrolyte in the composite electrodes with the accompanying loss of power and energy density. Generation of CO2 in Lithium ion cells leads to saturation of the electrolyte and cessation of the polymerization reaction. However, CO2 is easily reduced at the anode to oxalate, carbonate and CO11. The carbonate contributes to the SEI layer while the oxalate is sufficiently soluble to reach the cathode to be re-oxidized to CO2 thus resulting in a shuttle mechanism that explains reversible self-discharge. Irreversible reduction of CO2 to carbonate and CO partially accounts for irreversible selfdischarge. ACKNOWLEDGEMENTS. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Transportation Technologies, Office of Advanced Automotive Technologies of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 References: 1. Blomgren, G. E., J. Power Sources, 81-82, 112-118 (1999) 2. Kim, H.; Choi, J.; Sohn, H-J.; Kang, T, J. Electrochem. Soc., 146 (12), 4401-4405 (1999) 3. Greenwood, N. N.; Earnshaw A. Chemistry of the Elements, p. 1013, Pergamon Press, New York (1984). 4. Ibid p. 572. 5. Christe, K. O.; Dixon D. A.; McLemore, D.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem., 101, 151-153 (2000). 6. Holding, A. D; Pletcher, D; Jones, R. V. H. Electrochim Acta, vol. 34, 1529 (1989) 7. R. A. Wiesbock, U.S. Pat. 3,654,330 (1972). 8. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R; Atanasoski, R. J. Power Sources, 68, 320 (1997). 9. Sloop, S. E., Pugh, J. K., Wang, S., Kerr, J. B., Kinoshita, K., Electrochemical and Solid State Letters, 4, A42 (2001), 10. Vogdanis, L; Heitz, W. Macromol. Chem., Rapid Commun., 7, 543-547 (1986) 11. Amatore, C., Saveant, J-M., J. Am. Chem. Soc., 103, 5021 (1981). 我还是想说说, 其实就负极而言,成膜的电位是比较高的,一般高于0.8V(石墨),而后才是嵌锂阶段,直到负极电位接近0V,请注意,千万要控制住不要低于0V,那样会出现析锂了。其实所谓成膜添加剂,有些就是在更高的电位成膜,来减少EC等在负极表面成膜而造成的不可逆容量。 就整个电池电压而言,是在电压较低的时候成膜,此时正极电位刚刚爬到3.90V以上,考虑到极化的影响,成膜电压应该在3.35V或更低。大家可以做试验,用极小的电流,来观察是否有“平台”出现,当然要细心观察。 SEI并不重要! 电池在初始充电都能很好的形成,对电池的性能改善不大!原材料本身的缺陷在后天工艺上是弥补不了的!电池的好坏要看工艺的成熟程度和品质的控制思维,还有原材料本身的性能和稳定性,以及其中的合理搭配! 说白了电池要做好和其他的产品一样,需要技术,品质,管理等的一切配合,能做好其他就能做好电池,能做好电池你也能做好其他,包括汽车! 国产VC如何叩开电解液厂的大门 VC因为其对电池的循环有很好的效果所以目前很多电解液厂都使用其做添加剂制作功能电解液。但是因为要求较高大部份厂家就选进口VC了,而其中日本产的VC因为质量较好所占的分额较大。其时国产VC只要做好以下几方面要叩开电解液厂的大门可以说是比较轻松的事。 与进口VC相比国产货主要是质量较差:1,纯度不够高,电池工业级要求纯度达到99。99%以上。 2,水分太高,电解液要求VC含水量不超过10PPM,而很多国产VC达不到这一指标所以被拒之门外,这是一很重要的指标。 3,稳定性不好,一般低温放置三个月就变色了而一般日产的VC可放六个月以上,一般一百公斤可用五个月左右,变色的VC无论如何电解液厂都是不敢用的。 以上三点是电解液厂考虑的重点,特别是第二和第三点是重中之重,因为纯度方面电解液厂因为受色谱柱使用 范围的限制而无法分析,但是要想建立长久的合作VC厂商就必须达到这一指标,但在前期可以吹一下牛皮的了,毕竟这年头不吹牛连电解液都卖不掉,VC厂吹一下牛又有什么关系呢! 对于第二点则需要VC厂商的努力了,笔者这里有相关的可行性方案, 而对于第三点要控制变色方法还是很多的,而其对电解液的损失是头等因数,而其造成电解液的变色是无法挽回的,同时还要解决的问题是VC与电解液稳定剂的影响,笔者在使用过程中发现一个经常被电解液厂忽视的问题,这一点连日产VC都无法避免如果国产的可解决这一问题那么其效果则不用我多说了吧! 总之希望VC和电解液都做好,很好卖!联系电话:013544608127 对于一台手机或一台电脑而言,电池的作用就如同一个人的心脏一样,而电解液就如同血液一样。大家对电池的要求越来越高相应的电池厂商对电解液的要求也越来越高,毕竟在一个固液反应体系而言,溶液的作用是关键。那么电解液对电池有什么影响呢? 首先,电解液对电池的比容量和循环寿命有决定作用。电解液质量的好坏直接影响电池的比容量和循环,好的电解液可以使电池的循环做到700以上,而差的电解液也许连300也做不到。好的电解液可以使容量达到理想的范围,而差的电解液会使很多工作功亏一溃。 其次,电解液会影响电池的内阻和自放电。影响电池的内阻包括以下几方面:隔膜的厚度和孔隙率;正负极的密实度;电解液中的机械杂质和沉积物。在此我仅对电解液的影响稍做讨论。电解液在生产过程中不可避免会使用分子筛,即使过滤也会留有分子筛的碎屑。机械杂质不仅会使离子迁移困难,还会堵塞隔膜的细孔对电极产生包复作用,这就造成了电池的内阻升高,同时包复作用还会使电极的比表面减少造成电极的利用率降低。再者分子筛中带入的钠离子会使电池的自放电增大,同时使电池的容量衰减。 再次,对电池安全性能的影响。电解液中的杂质会使电池发生气涨和鼓包,严重的会涨裂电池而漏液,更危险的会发生爆炸,具体的杂质下文会叙及。 第四,对电池稳定性的影响。电解液的稳定性直接影响到电池的稳定。 第五,对电池耐候性的影响。因为地域的影响对电池的要求会有所不同普通的电解液在0度左右会凝固,所以在北方的冬天不适用。 第六,对其他特殊性能的影响。如大电流放电和快速充电,聚合物锂电等都与电解液的生产制照和其质量密不可分。 终上所述,电解液对电池的性能起决定性的作用,那么影响电解液的因数是什么呢 电解液的渗透与分布:一、电极的比表面积加大(材料比表面积和导电剂的添加量及种类);二、正负极片不要压太实;三、注液后的搁置时间和方式(离心,加温,延长时间等);四、化成制度,尽量延长时间;五、化成后的搁置时间和方式;材料充分被浸透,电池性能才能稳定和正常发挥 SEI膜不重要???你不是做电池的吧?电解液和碳负极的相容性问题,不同的电解液有不同的负极去匹配。 一般来说,天然石墨包覆的负极,不可逆容量要大一点。mcmb要好一点,这是我实验的结果。还有一个,SEI膜的成膜电位是1.2~0.8V(vs Li/Li+),嵌锂电位是0.25~0v,这个电位中嵌入的锂才是可逆的。如果能让SEI膜在更高的电位下形成,它能阻止溶剂的进一步还原,减少不可逆容量,也就是在首次充电曲线中不可逆容量的极化比较大,容易下降到嵌锂平台,这样形成的可逆容量要高。SEI膜对电池的循环性能有至关重要的作用,没有良好的SEI膜,每次循环都有较大不可逆容量损失,这样的电池通常可以从电解液吸水,或电池内部存在结晶水时可以看出来。 electrodes with high power and high capacity for rechargeable lithium batteries 本研究组已经实现磷酸铁锂的规模化生产,现处于保密阶段.粒度超前稳定在1-2微米,1C容量120mAh/g以上.估计今年底达到吨量级。预备自用 若想生产出来批次稳定的产品取决于以下几点: 1、原材料的具有稳定的纯度,稳定的粒径,较少的s,Na等离子。纯度不高的材料会使LiFePO4的晶格结构。 2、稳定的混合工艺以保证多种原料达到分子级混合状态,稳定的烧结工艺以保证所得材料的一致性。 3、烧结后要采用先进的粉碎技术,以保证最终产品具有稳定的粒径和比表面积。 锂离子电池阴极活性材料的表面改性方法 锂离子电池阴极活性材料的表面改性方法,先将可溶性的掺杂离子盐配制成水溶液,然后将有机溶剂与水溶液混合,再加入需要改性的阴极活性材料粉末搅拌均匀形成悬浮液,在悬浮液中加入尿素回流,并加热即可得到改性的阴极活性材料粉末。本发明利用尿素的水解促成沉淀剂的生成,使改性氧化物的前驱体离子发生沉淀反应,通过反应条件的调节,控制沉淀剂的释放速度,满足包覆前驱体在阴极活性材料表面非均匀成核的条件,让改性氧化物全部在阴极活性材料表面成核生长,产生均匀致密的包覆前驱体,再在一定温度下使沉淀分解为改性氧化物,最后在一定温度下处理包覆氧化物的阴极活性材料,在其表面形成高浓度的掺杂离子,能够显著改善阴极材料的循环性能。 1、 锂离子电池阴极活性材料的表面改性方法,其特征在于: 1)首先将可溶性的掺杂离子盐MxAy配制成浓度为0.01-0.2mol/l的水溶液,其中M=Mg2+、Zn2+、Ni2+、Cu2+、Al3+、Co3+、Cr3+、Fe3+或Ti4+;A=NO-3、Cl-或 CH3COO-; 2)然后将有机溶剂与水溶液按2∶1~1∶10的体积比混合,再在该混合液中按10~300g/l加入需要改性的阴极活性材料LiBO2或LiNZMn2-ZO4、LiFePO4粉末搅拌均匀形成悬浮液,其中B=CoxNiyMn1-x-y,x=0-1,y=0-1,x+y≤1;N=Co、 Ni、Ti、Cr或Cu,Z=0~0.5; 3)按掺杂离子与尿素1∶1~1∶10的摩尔比在悬浮液中加入尿素,在70 ℃-100℃回流,持续搅拌并加热2-20h后,在空气中60℃干燥20h,随后在 200-600℃恒温处理5-20h,再在600-1000℃处理1-20h,研磨后得到改性的阴极活性材料粉末。 漫谈锂电池技术发展 随着科技的发展而有各式各样的新秀出现,但从目前的态势来看,以锂材为核心(lithium-based)的电池技术,仍将会主宰今后几年内可携式产品设计的走向。为可携式产品提供最佳的电力来源,可说是工程设计人员的一大使命。要达到体积小、重量轻、电力强的充电电池,则是电池业者永无止尽的一项挑战。而随着电池技术的不断推进,尽管有各式各样的新秀出现,但从目前的态势来看,锂离子(lithium-ion)电池仍是现今的主流,同时,可以确定的是,以锂材为核心(lithium-based)的电池技术,仍将会主宰今后几年内可携式产品设计的走向。最早的可充电电池(rechargeable battery)(译注:本文里所提到的可充电电池是指二次电池,也就是可多次重复充电的电池),应该算是又重又大又危险的铅酸(lead-acid)电池了。不仅酸性电解液具有腐蚀性,电池作用中所产生的氢气也具有爆炸的危险。尽管密封式铅酸电池修正了这方面的疑虑,但重量仍是一大问题。此外,随着最近「欧盟有害物质管制指令」(RoHS:European Reduction of Hazardous Substances)的规定,严格限制电子产品中使用含铅物质,而这也势必让铅酸电池的出路变得更崎岖。 镍镉镍氢的镍系时代镍镉电池(nickel-cadmium,简称为NiCad或NiCd),则是接着出现的可充电电池。除了可以有较好的电力积蓄表现,还具备了较轻的「体重」,也因此,马上就成为当时的主流标准。虽然如今仍可在许多地方看到镍镉电池,但因为其使用寿命与续航力的问题,已经逐渐在市场上凋零。镍镉电池的问题之一,是假使没有定期完全放电(即所谓的调节性放电conditioning),便会危害到电池的蓄电力。而镍镉电池另一个较为人知的缺点,则是记忆效应(memory effect),这对于设计人员来说,也是深感棘手。毕竟,许多使用者(尤其是要出远门的人)都希望自己的电池是「幸福美满」地充饱电。一旦使用者在操作电子装置时,发觉电力用没多久就耗罄了,想必心中会立即充饱「不爽的感觉」。 继之问世的,则是镍氢电池(nickel-metal hydride,简称为NiMH,日文称之为水素电池)。由于具备了相当好的电压特性,电池单体电压(cell voltage,即单电池电压)为一点二伏特,并与原有的标准镍镉电池电压相同,所以不需要更改什么设计,就可以立即拿来使用,这也使得镍氢电池很快地就取代了镍镉电池的地位。此外,即便镍氢电池价格比镍镉电池还贵,但因为它具有较高的积蓄电力,并消弭了记忆效应的负面影响,这对于消费者来说,仍然是一大福音。只不过,镍氢电池仍有其美中不足之处,也就是续航寿命(lifetime)的问题。镍氢电池大约只能重复充电五百次,而镍镉电池只要妥善处理,甚至可以重复充电达一千次。所幸,在两相权衡下,镍氢电池还是在主流产品的市场上打败了镍镉电池,对手所剩的版图只是那些极低价的电子产品。 锂系人马赢得江山当前这个世代的电池,则是以锂材为依归。最原始的锂电池,是以重量轻、电力强为诉求,但却不能充电(译注:就是现在计算机主机板里用来维系系统时间的钮扣型电池)。而这却足以让锂系人马快速的布桩到许多不需要充电的电子产品中,如照相机。然而,对于需要充电的产品,像是行动电话手机或是笔记型计算机,最初的锂电池就只能拱手让人了。有鉴于此,锂离子(lithium-ion,简称为LiIon或Li-ion)的出现,显然让整个锂系人马就此鸡犬升天。比起其它可充电电池,锂离子电池的重量省了百分之五十,而针对镍氢和镍镉电池等镍系对手,在相同的电力条件下,容积(volume,即体积)少了百分之二十至五十左右(详见【表一】)。同时,锂离子电池的标准输出电压约为三点七伏特,正好可以让锂离子电池取代三颗串联起来的镍材(nickel-based)电池。对于今日广泛使用的CMOS(金属氧化物半导体)电路来说,单一颗电池就可以搞定了,因此也大大地降低产品的重量与体积。虽然锂离子电池以每瓦特的供电成本来看,确实比镍系电池逊色,但随着技术的进步,这样的成本差距也逐渐拉近中。快速老化问题不过,锂离子电池还有一项特性,可能许多人都不太知道,那就是:快速老化(译注:原文为limited shelf life,系指每次充饱电之后可用的蓄电量,随着时间消逝而老化变低)。当锂离子电池出厂之后,充饱电放在室温下,会以每年百分之二十的速度自然老化(温度越低的话,老化的速度会越慢)。即使是买来了之后完全没有用过,或是只用过几次,也不会减缓老化的速度。也就是说,自然老化跟使用次数无关。因此,一般锂离子电池出厂后的寿命顶多用个五年,就算买来都没用过也是一样。尽管如此,许多设计者却不认为五年对于消费性电子产品有何影响。毕竟,在寿命老化到完全不行之前,人们早就买新一代的产品了。所以,比较起锂离子电池的诸多优点,这个关于「年纪」方面的问题,并不会有多大的负面影响。因此,也让包括手机在内的广大消费性电子产品、以及可携式电子装置,都前仆后继地投入锂离子电池的阵营。 根据市场研究机构Frost and Sullivan(译注:网址为其蓄电量在与目前相同价格的锂离子电池单体相比,将可达到三倍左右。另一个采用奈米材料的锂离子电池,则是由东芝(Toshiba)所开发,其诉求乃是冲着提升充电速度而来,并预计会在二○○六年正式推出。此电池可以在一分钟充电达百分之八十的满电量,在一千次的重复充电后,其蓄电量只减损了百分之一,同时,在低到零下四十度的环境中,还可以提供大约百分之八十左右的电力。当然,在高温环境下的表现,也绝对会比传统的锂离子电池好上许多。而高蓄电量则是A123 System公司( 这个问题的确很大,如果泛泛而谈我认为我影响电池循环性能以下几下原因: 1、原材料的选择 原材料性能好坏是影响电池循环性能的主要因素; 2、原材料的搭配 即便全部选择最好的原材料也不一定做出最好的电池,还要考虑各种材料之间的搭配使用,比如电解液对负极材料的选择性等; 3、工艺配方的优化 这也是很关键的,比如导电剂吧,量多了影响电池容量、量少了增大电池的内阻等; 4、工艺参数的选择 比如最重要的正负极容量比、极片的密度,电芯极片的接解程度等,这些对电池的性能影响比较大; 5、以上各因素将对电池的容量、电池内阻等都有直接影响,必须经过大量实验进行摸索、优化,以达到一个最佳的状态; 6、设备精密程度、操作员工的素质也对电池的性能至关重要。 ---------------------等 其实这个问题很难用几名话说清楚,只有通过实践才能找到“真理”,比如我通过近3年的研制,现在电池(软包装)的循环性能1C循环1000次容量可保持在85%左右。 好消息啊,好消息啊,贝特瑞开始正式推出人造石墨 贝特瑞从2006年8月开始正式推出人造石墨,进一步挤占日本在国内占有的高端市场!本次推向市场的高端人造石墨分两个产品,分别适合PVDF体系和SBR-CMC体系! 基本性能指标如下: 首次可逆容量≥350mAh/g; 首次放电效率≥94%,可以更好的促进正极容量的发挥; 振实密度≥0.9g/ml,压实密度在1.55-1.7g/ml(根据电池类型调整压实比); 该材料的显著特点是: 材料工艺适应性强,适合目前的各类工艺体系与其他配套材料相匹配; 该材料加工性能好,作为人造石墨在高压实比下能有效的发挥出材料的性能; 材料吸液性强,能充分保证电解液的有效渗透; 该材料适合PC电解液体系; LB-315 产品牌号 产品名称 化学结构式 电解液 LB-315 LB-315 电解液 LB-315 组成:DMC:EMC:EC=1:1:1(W/W) 产品规格 LiPF6浓度 1.0M CAS号 化学名称 分子式 分子量分子量 性质: 无色透明液体,具有较强吸湿性。 性质及用途 应用: 主要用于可充电锂离子电池的电解液,只能在干燥环境下使用操作(如环境水分小于20ppm的手套箱内)。 规格: 溶剂组成 DMC:EMC:EC =1:1:1 (重量比) LiPF6浓度 1.0M 质量指标: 项 目 规格 密度(25℃)g/cm3 水分(卡尔费休法) 游离酸(以HF计) 电导率(25℃) 其他检测项目指标可根据客户要求来定。 1.23±0.03 ≤20ppm ≤50ppm 10.4±0.5 ms/cm 指 标 使用方法 本产品分500g、1kg氟化塑料瓶外加铝塑复合袋充氩气,20kg、200kg不锈钢罐(带快速接头)包装,也可按包装 客户要求定制。 聚合物锂离子电池负极材料小资料 锂离子电池的容量在很大程度上取决于负极的锂嵌入量,其负极材料应满足如下要求:⑴锂的脱嵌过程中电极电位变化较小,并接近金属锂;⑵有较高的比容量;⑶较高的充放电效率;⑷在电极材料的内部和表面Li+均具有较高的扩散速率;⑸较高的结构、化学和热稳定性;⑹价格低廉,制备容易。目前有关锂离子电池负极材料的研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。 一般制备负极材料的方法如下:①在一定高温下加热软碳得到高度石墨化的碳;②将具有特殊结构的交联树脂在高温下分解得到硬碳;③高温热分解有机物和高聚物制备含氢碳。 碳负极材料要克服的困难就是容量循环衰减的问题,即由于固体电解质相界面膜(Solid electrolyte interphase,简称SEI)的形成造成不可逆容量损失。因此制备高纯度和规整的微结构碳负极材料是发展的一个方向。