n2+n(n-1)2+(n-1)
例1.解 (1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=-=n.
22a1也满足an=n,故数列{an}的通项公式为an=n.
(2)由(1)知an=n,故bn=2n+(-1)nn. 记数列{bn}的前2n项和为T2n,则 T2n=(21+22+…+22n)+(-1+2-3+4-…+2n).
2(1-22n)2n1
记A=2+2+…+2,B=-1+2-3+4-…+2n,则A==2+-2,
1-2
1
2
2n
B=(-1+2)+(-3+4)+…+[-(2n-1)+2n]=n. 故数列{bn}的前2n项和T2n=A+B=22n+1+n-2. 引申探究解 由(1)知bn=2n+(-1)n·n.
n+1
2-2nn
当n为偶数时,Tn=(21+22+…+2n)+[-1+2-3+4-…-(n-1)+n]=+=2n+1+-2;
221-2
当n为奇数时,Tn=(2+2+…+2)+[-1+2-3+4-…-(n-2)+(n-1)-n]=2
1
2
n
n+1
n-1n5-2+-n=2n+1--.
222
∴T=
2
n
n
2n+1+-2,n为偶数,
25n+1n--,n为奇数.22
例2 解(1)由题意知,当n≥2时,an=Sn-Sn-1=6n+5,当n=1时,a1=S1=11,满足上式,所以an=6n+5.
a1=b1+b2,11=2b1+d,b1=4,
设数列{bn}的公差为d.由即可解得所以bn=3n+1.
a2=b2+b3,d=3,17=2b1+3d,
(6n+6)n+1
(2)由(1)知,cn=2n+1,又Tn=c1+c2+…+cn,得Tn=3×[2×22+3×23+…+(n+1)×2n+1],2Tnn=3(n+1)·(3n+3)=3×[2×23+3×24+…+(n+1)×2n+2].两式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=
4(1-2n)n+2
-(n+1)×2=-3n·3×2n+2,所以Tn=3n·2n+2. 4+
1-2
a1=9,10a1+45d=100,2a1+9d=20,a1=1,
变式训练解 (1)由题意有即解得或2
a1d=2d=2a1d=2,d=9.
an=2n-1,
故n1
bn=2-
a=9n+
或
2.b=9·9
nn
n-1
1
,
(2)由d>1,知an=2n-1,bn=2n-1,故
2n-12n-13579
cn=n1,于是Tn=1++2+3+4+…+n1,①
22222-2-
2n-12n-12n+32n+31135791111
Tn=+2+3+4+5+…+n.②,①-②可得Tn=2++2+…+n2-n=3-n,故Tn=6-n1. 2222222222222-2-
222例3 解 (1)由a2n+2an=4Sn+3,可知an+1+2an+1=4Sn+1+3.两式相减,得an+1-an+2(an+1-an)=4an+1, 22即2(an+1+an)=an+1-an=(an+1+an)(an+1-an).由an>0,可得an+1-an=2.
又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.
所以{an}是首项为3,公差为2的等差数列,通项公式为an=2n+1. 1111-1(2)由an=2n+1可知bn===.
anan+1(2n+1)(2n+3)22n+12n+3
111111-1n
设数列{bn}的前n项和为Tn,则Tn=b1+b2+…+bn=3-5+5-7+…+2n+12n+3=. 23(2n+3)1
例4解析 由f(4)=2,可得4=2,解得a=,则f(x)=x2.
2
a
11
∴an==f(n+1)+f(n)
1n+1+n
=n+1-n,
S2 017=a1+a2+a3+…+a2 017=(2-1)+(3-2)+(4-3)+…+(2 017-2 016)+(2 018-2 017)=2 018-1.
112变式 解 (1)∵S2n=anSn-2,an=Sn-Sn-1 (n≥2),∴Sn=(Sn-Sn-1)Sn-2,即2Sn-1Sn=Sn-1-Sn,① 11
由题意得Sn-1·Sn≠0,①式两边同除以Sn-1·Sn,得-=2,
SnSn-1
11111∴数列S是首项为==1,公差为2的等差数列.∴=1+2(n-1)=2n-1,∴Sn=. S1a1Snn2n-1
Sn111-1(2)∵bn===,
2n+1(2n-1)(2n+1)22n-12n+1
11111111-1n
∴Tn=b1+b2+…+bn=[(1-)+(-)+…+(-)]=2n+1=. 233522n+12n-12n+1
111
例5.(1)解 当n=k∈N+时,Sn=-n2+kn取得最大值,即8=Sk=-k2+k2=k2,故k2=16,k=4.
222
1799
当n=1时,a1=S1=-+4=,当n≥2时,an=Sn-Sn-1=-n. 当n=1时,上式也成立.综上,an=-n.
22229-2ann-1n-1n23n3n
(2)证明 ∵n=n1,∴Tn=1++2+…+n2+n1, ①,2Tn=2+2++…+n3+n2. ②
2-22--2--22222n+211n1n
②-①,得2Tn-Tn=2+1++…+n2-n1=4-n2-n1=4-n1. 22-2-2-2-2-
n+2
∴Tn=4-n1.∴Tn<4.
2-
因篇幅问题不能全部显示,请点此查看更多更全内容