t?J rJr 201s~ .+~--!ii M ~ 'f JtJJ-* -jJij ~N * .. --· ~ 41A ={ I,3,5}, Ji!~ A== c. {2,4} 30 ~.tEfi,f,J,llttliH19rlB\"f'~Ij!icp, ..Rfi' -, i!ffll '**II~ to ,J,11, fe,J,113 ~' ~ -:tJLll~*II ~ ~SKtftJ) 1. E1.1;n~~U ={1,2,3,4,5}, A. {l,2,3,4,5} 2. l;,l rm~iE~iEi!DB\"J~ A. lg2xlg3 = lg6 B. {l,3,5} D. 0 B. (lg2)2 = lg4 D. lg4-lg2=lg2 c. lg2+ lg3 = lg5 3. i:1.1;UxeR, ~r~~~ffldfta'-J~B. sin(7 t -x) = sin x D. sin(21t-x)=sinx A. sin(-x)=sinx C. sin(1t+x)=sinx 4. Pii~f(x) = ~log2(x-l) B\"])E50~H:A. {xix> 1} B. {xix~ l}C. {xix> 2} D. {xlx~2} 5. E1.1;n cosB · tan B > 0, JJ13.z. B H: A. ffi-~ffi ~ ~~jij = = B. ffi=~ffi=-~~~jij D . _ffi-§.x ffi [!J ~ ~~ 1H c. ffi =-~ffi [!J ~ ~~ Jij 6. ~a= 20.s ' b log3 2 ' c =I og2 sin 1 ' 9iLJ c. b>a>c D. b>c>a A. a>b>c B. a>c>b 7. ffif&f(x) = x2 ·sinx (fl$7rOOft.k~£ y y x x x A. c. D. ~, it!l!J~~~~ffll~. ~~: ~AD=x, ffll*~L(x)fi~·== 'ii'LBAD=B,·ffll*;igL'(B). x, BtE5E>l~~!i:ka1 . L(x) ;'6:1.i::kf§\"~,J,, L'(B) %B .. L(x) ;'6:1.i::kf§\"~,J,, L'(B) %~:xJ§~1J, c. L(x) ;'6~1J,J§~::k, L'(B) %~:xJ§~1J, A 0 B D. L(x) ;'6~1],J§~::k, L'(B) $t~1J,J§~:x
A ' • ,.. -· 16. ,'4t o{f(xo) <0, .o-J::;-Jr11w*lr timflf(x) =x 2 +mx.+m +3, g ( x ) =m x-m, ;-;+t.rf1-ru::m:AA Xo 1MR:. ( 9!1J g X0)<0, <**Ii~ s ,J,g, ~ 52 ~. -~e~l:f:t~*ij!P}J\\ iiEPJHifi~)j(·ilJ:~) 11. <* >lim7t *) 10 1 7t B9;0 tana = -, a E (0, -) . 3 2 ( I ) >lttan(n+a) Emffi; ( II ) * sin a + 2c~sa Em ffi.. 5cosa-sma 1s. <-*>11m7t 10 *) 5B9;0f£1~/(x) =sin(2x+ 7t). 6c 11) 1Ef£1~f(x) 00~-11'.mJiJr:ff ~-Sf~;-i'If!fir*ltfifUPEJ~ g(x) 1'.mOO~, 31< g(x) !'.mffiHlrA. 20. <- *llfilrwHt 10 5t) B~i11~ f(x) == lg.!2_ l+x · ( I ) iia, b E (-1,1), i,i£aJ3: J(a)+ f(b) = f( a+b): I+ab (II) ~ x E [O, ll1, fE!~y =f (sin2) 1t 2 x)+ f(mcosx+2m) 1f~~. *~~m a