目: 程: 名: 业: 级: 号: 导教师:
课 程 论 文
差热分析仪 智能仪器仪表 机械设计制造及其自动化 机制106 103731620 职称: 讲师 2013 年12 月 20 日
题课姓 专班学指 差热分析仪
作者: 指导老师:
摘要:本文对差热分析的基本原理以及影响差热分析的因素进行了阐述与分析,在进行差热分析过程中,如果升温时试样没有热效应,则温差电势应为常数,差热曲线为一直线,称为基线。但是由于两个热电偶的热电势和热容量以及坩埚形态、位置等不可能完全对称,在温度变化时仍有不对称电势产生。此电势随温度升高而变化,造成基线不直,这时可以用斜率调整线路加以调整。 关键词:差热分析;基线;对称
Differential thermal analysis
Abstract:in this paper, the basic principle of the differential thermal analysis and the influencing factors of differential thermal analysis were expounded and analysis, in the process of differential thermal analysis, warms up if the sample no thermal effect, the temperature difference between electric potential should be constant, the differential thermal curve is a straight line, known as the baseline. But because the two thermocouple thermoelectric potential and thermal capacity and crucible shape, location, etc. Can't completely symmetric, asymmetric still has potential as the temperature changes. The electric potential changes with temperature, and the baseline is not straight, then can adjust the line with slope. Key words: differential thermal analysis; The baseline; symmetry
1.引言: 差热分析(Differential Thermal Analysis,DTA)是在程序控制温度下测定待测物质和参比物之间的温度差和温度关系的一种技术。物质在加热或冷却过程中的某一特定温度下往往会伴随吸热或放热效应的物理、化学变化,如晶型转换、沸腾、升华、蒸发、融化等物理变化以及氧化还原、分解、脱水和解离等化学变化。另有一些物理变化如玻璃化转变,虽无热效应发生,但热熔等某些物理性质也会发生改变。此时的物质不一定改变,但是温度是必定会变化的。差热分析就是在物质这类性质基础上建立的一种技术。差热分析法是对加热过程中所发生上述各种物理-化学现象做出精确的测定和记录[1]。因此,被广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,也被广泛用于地质、冶金、石油、建材、化工等各个部门的研究及生产中。本文首先阐述了差热分析的基本原理,分析了影响差热分析的因素。[3] 2 差热分析的基本原理 2.12 基本原理
物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分 解、化合、吸附、脱附等物理或化学变化,并伴随有焓的改变,因而产生热效应,其表现为样品与参比物之间有温度差。记录两者温度差与温度或者时间之间的关系曲线就是差热曲线(DTA曲线)。 差热分析仪的结构如图左半部分所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和记录仪。
从差热图上可清晰地看到差热峰的数目、高度、位置、对称性以及峰面积。峰的个数表示物质发生物理化学变化的次数,峰的大小和方向代表热效应的大小和正负,峰的位置表示物质发生变化的转化温度。在相同的测定条件下,许多物质的热谱图具有特征性。因此,可通过与已知的热谱图的比较来鉴别样品的种类。理论上讲,可通过峰面积的测量对物质进行定量分析,但因影响差热分析的因素较多,定量难以准确。[10] 2.2 差热分析的仪器结构简介 1) 加热系统
加热系统提供测试所需的温度条件,根据炉温可分为低温炉(<250℃)、普通炉、超高温炉(可达2400℃);按结构形式可分为微型、小型,立式和卧式。系统中的加热元件及炉芯材料根据测试范围的不同而进行选择。 2) 控制系统
温度控制系统用于控制测试时的加热条件,如升温速率、温度测试范围等。它一般由定值装置、调节放大器、可控硅调节器(PID-SCR)、脉冲移相器等组成,随着自动化程度的不断提高,大多数已改为微电脑控制,提高的控温精度。 3)信号放大系统
通过直流放大器把差热电偶产生的微弱温差电动势放大、增幅、输出,使仪器能够更准确的记录测试信号。
4)差热系统
差热系统是整个装置的核心部分,由样品室、试样坩埚、热电偶等组成。其中热电偶是其中的关键性元件,即使测温工具,又是传输信号工具,可根据试验要求具体选择。 5)记录系统
记录系统早期采用双笔记录仪进行自动记录,目前已能使用微机进行自动控制和记录,并可对测试结果进行分析,为试验研究提供了很大方便。 6)气氛控制系统和压力控制系统
该系统能够为试验研究提供气氛条件和压力条件,增大了测试范围,目前已经在一些高端仪器中采用。
2.3 差热分析曲线起止点温度和面积的测量
以TTSTr对t作图,所得差热分析曲线如图1所示。在0-a区间,T大体上是一致的,形成差热分析曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在差热分析曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。DTA曲线所包围的面积S可用下式表示:
gCt1gCHTdtS
mt2m
式中m,H是反应热,g是仪器的几何形态常数,C是样品的热传导率T是温差,t1是差热分析曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和
样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。
图1差热分析吸热转变曲线
差热分析曲线的峰面积为反应前后基线所包围的面积,可用以下方法对进行其测量:
(1)使用积分仪,可以直接读数或自动记录下差热峰的面积;
(2)剪纸称重法,若记录纸厚薄均匀,可将差热峰剪下来,在分析天平上称其质量,其数值可以代表峰面积。
对于反应前后基线没有偏移的情况,只要联结基线就可求得峰面积,这是不言而喻的。对于基线有偏移的情况,下面两种方法是经常采用的:
(1)分别作反应开始前和反应终止后的基线延长线,它们离开基线的点分别是Ta和Tf,联结Ta、Tp、Tf各点,便得峰面积,这就是ICTA(国际热分析协会)所规定的方法见图
(2)由基线延长线和通过峰顶Tp作垂线,与DTA曲线的两个半侧所构成的两个近似三角形面积S1,S2(图2(2)中以阴影表示)之和
SS1S2
表示峰面积,这种求面积的方法是认为在S1中丢掉的部分与S2中多余的部分可以得到一定程度的抵消。[4]
图2 峰面积求法
2.4 影响差热分析的主要因素
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。一般说来,一是仪器,二是样品。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好的重现性。[2] (1)气氛和压力的选择
气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。
(2)升温速率的影响和选择
升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接**衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择8℃/ min~12℃/ min为宜。[5] (3)试样的预处理及用量
试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移[3]。 (4)参比物的选择
要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。常用- Al2O3或煅烧过的氧化镁(MgO)或石英砂作参比物。如分析试样为金属,也可以用金属镍粉作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,可以减少气体大量出现,以免使试样冲出。选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、铁粉、Fe2O3、玻璃珠Al2O等。[6] (5)纸速的选择
在相同的实验条件下,同一试样如走纸速度快,峰的面积大,但峰的形状平坦,误差小;走纸速率小,峰面积小。因此,要根据不同样品选择适当的走纸速度。不同条件的选择都会影响差热曲线,除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等。市售的差热仪,以上因素都已固定,但自己装配的差热仪则需要考虑这些因素。[1] 3结论
差热分析从被发明以后,迅速应用于各个研究领域,成为分析金属、陶瓷及高分子物质的有效工具,并且被不断发展。1935年发展了定量差热分析方法,可以精确的确定矿物在混合物中的含量。麦西尔斯提出了微量DTA法,是差热测试的灵敏度和分辨率得到很大提高,因而得到了迅速发展。20世纪60年代,差示扫描量热法(DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。
参考文献:
[1] (英)M·I·波普. 差热分析 DTA技术及其应用指导[M].北京:北京师范大学出版社,1982 [2] 王斌. 现代分析测试方法[M].北京:石油工业出版社,2008
[3] 曹国喜,冯际田,胡和方等.差热分析若干影响因素探讨[J].2002,30(4) [4] 刘振海. 热分析导论.北京:化学工业出版社,1988 [5] 贾建. 国外分析仪器,2002,3:221 [6] 热天平. 北京:计量出版社,1995
[7] 许智林. 仪器仪表与分析监测,2004,3:27
[8] 杨庆柏.热工过程控制仪表.北京:中国电力出版社,1998. [9] 孔元发.热工自动控制设备. 北京:水利电力出版社,1994. [10] Kortun G. Reflectance Spectroscopy〔M〕.New York: Spring-Verlag,1969 [11] 张宏建等.检测控制仪表学习指导. 北京:化学工业出版社,2006. [12] 何衍庆等.XDPS分散控制系统. 北京:化学工业出版社,2002.
因篇幅问题不能全部显示,请点此查看更多更全内容