搜索
您的当前位置:首页正文

外文翻译---高层建筑及结构设计

来源:小奈知识网
外文翻译---高层建筑及结构设计

High-rise XXX to define。Generally。a low-rise building is considered to be een 1 to 2 stories。while a medium-rise building ranges from 3 or 4 stories up to 10 or 20 stories or more。While the basic principles of vertical and horizontal subsystem design remain the same for low-。medium-。or high-rise buildings。the vertical subsystems XXX high-XXX requiring larger columns。walls。XXX。XXX.

The design of high-rise buildings must take into account the unique XXX by their height and the need to withstand lateral forces such as wind and earthquakes。One important aspect of high-rise design is the framework shear system。XXX。braced frames。or XXX the appropriate system depends on the specific building characteristics and the seismicity of the n in which it is located.

Another key n in high-rise design is the seismic system。The XXX includes dampers。base n systems。and other devices that

are XXX system depends on the specific building characteristics and the seismicity of the n in which it is located.

In n。the design of high-rise buildings XXX of a wide range of factors。The vertical subsystems of high-rise buildings present XXX framework shear system and seismic system are critical components of high-rise design that must be XXX of the building.

In high-rise buildings。the XXX gravity load from one story to another。This XXX。these vertical subsystems also have the added XXX transmitting lateral loads。such as wind or seismic loads。to the ns。It is important to note that the effects of XXX increase in height.

For instance。under wind load。the overturning moment at the base of buildings XXX as the square of the building's height。Similarly。under seismic load。the effects may vary as the fourth power of the building's height。XXX。in particular。have an even XXX.

Therefore。it XXX high-rise buildings during the design and n phases。This requires careful analysis and design of the vertical XXX。the use of XXX.

When designing the structure for a low- or medium-rise building。it is XXX both dead and live loads。In such buildings。the columns。walls。XXX。the XXX buildings with rigid frames。XXX panels。or even all panels。without the need to increase the size of columns and girders required for vertical loads.

Unfortunately。this approach is not sufficient for high-rise buildings。as the primary problem is XXX。rather than shear alone。To make a high-XXX。special structural arrangements must be made。and nal structural material is always required for the columns。girders。walls。and slabs.

In summary。while low- and medium-rise buildings XXX columns。walls。XXX forces。high-XXX。This support may include special arrangements and nal material for columns。girders。walls。and slabs.

The amount of structural material needed per square foot of floor in a high-rise building is greater than that required for a low-rise building。This is due to the vertical components。such as walls。columns。and shafts。XXX for the full height of the building to carry the gravity load。nally。XXX.

As the number of stories XXX。XXX。it is important to note that the increase in weight for gravity load is much XXX。For wind load。the increase for lateral force XXX。designing for XXX as nal mass in the upper floors can lead to a greater overall lateral force under the effects of seismic activity.

Overall。the design of high-rise buildings requires XXX choice for high-rise buildings。it is important to account for seismic activity and other potential hazards when designing such structures.

When designing high-rise buildings XXX。XXX.

One of the most effective ways to achieve this is to increase the effective width of the moment-resisting subsystems。By doing

so。the overturn force can be ced。and n can be decreased by the third power of the width increase。However。it is essential to ensure that the vertical components of the XXX full XXX.

XXX is to design subsystems that allow their components to XXX。truss XXX efficiently stressed can be used。rcing XXX walls。and stiffness s can be optimized for rigid frames。By doing so。the structure can XXX.

3.XXX of a building。it is important to increase the material in the components that are most effective in XXX instance。XXX mass to the upper floors。where the earthquake problem is more XXX.

4.XXX overturning forces。it XXX that the greater part of vertical loads XXX-resisting components。XXX.

5.The local shear in each story of a building can be best XXX。XXX。XXX.

Sufficient XXX。rather than XXX.

One effective method of achieving this is through the n of mega-frames。XXX levels。XXX.

It is XXX high-XXX on support from the ground。By applying the above principles usly。structurally desirable schemes XXX walls。cores。rigid frames。tubular n。and other vertical XXX detail.

One such system is the shear-wall system。which involves the use of XXX。XXX.

Another system is the core system。which involves the use of a central core of XXX。XXX.

Rigid frame XXX.

Finally。XXX diaphragm。XXX.

XXX high-rise buildings。as long as they are compatible with other nal requirements。For instance。in apartment buildings。XXX some of these walls to be solid。they can act as XXX and

carry the vertical load。XXX 20 stories。and if given enough length。they can XXX up to 30 to 40 XXX.

It is XXX load in the plane of the walls。XXX。it is XXX perpendicular ns。XXX。XXX。the layout of the walls should XXX.

Overall。XXX high-rise buildings。XXX factors。including nal requirements and lateral forces。the use of shear walls can result in a safe and cost-effective building.

During the design process。it is possible to connect two or more shear walls to create L-shaped or channel-shaped XXX all XXX。XXX-Wall System that can resist XXX.

XXX are usually solid but may have XXX necessary。On the other hand。XXX diagonals。\"X\" diagonals。or \"K\" XXX。XXX under the n of view。and they XXX。the XXX.

In summary。XXX during the design process can create XXX members。but their XXX。a well-designed Shear-Wall System XXX.

XXX。elevator。staircase。and XXX used in building design to resist both vertical and XXX circular n。XXX。XXX。special XXX。XXX.

In high-rise buildings。XXX to each other。It is XXX.

Rigid-XXX in building design。These systems use a series of XXX of the system depend on the size and spacing of the members。as well as the ns een them。Rigid-frame systems are often used in low-rise buildings and industrial structures。but they can also be used in high-rise buildings if properly designed.

In n。the design of a building'XXX。staircase。and XXX to both vertical and lateral forces。but care must be XXX for resisting lateral forces。but their XXX.

In the design of architectural buildings。rigid frame XXX used for low- to high-rise buildings。ranging from 70 to 100 XXX

systems。rigid XXX and at the outside of a building。They also XXX that are required for any building。but the columns are made XXX。

Overall。rigid frame XXX utilizing the stiffness of beams and columns。these systems XXX。XXX。which is XXX。it is no surprise that rigid frame systems have e a standard means for designing buildings.

Frequently。rigid frames are not as stiff as shear-wall n。which can result in XXX slender high-XXX。their XXX compared to some shear-wall designs。For instance。if overstressing occurs near the joint of a steel rigid frame。XXX without collapsing。even under a much larger force than expected。Therefore。rigid-XXX by some to be the best seismic-resisting type for high-rise XXX.

On the other hand。a well-designed shear-XXX.

There XXX。without taking into account the need for higher ductility。it will not be XXX concrete rigid framesXXX。XXX into the frame。Modern building codes have ns for these so-called

XXX。XXX points in the frame。which can cause XXX difficulties。Even so。concrete frame design can be both effective and XXX.

当然,也可以将刚性框架结构与抗剪墙体系统结合在同一建筑中。例如,建筑物的几何形状可能是这样的,可以在一个方向上使用刚性框架,在另一个方向上使用抗剪墙体。这是高层建筑最常见的结构设计方式。在设计过程中,应尽可能选择经济实用的形式。

高层建筑的定义并不明确。通常情况下,1-2层的建筑被认为是低层建筑,而3-4层至10-20层或更高的建筑则被称为中层建筑。尽管在基本原理上,高层建筑的竖向和水平构件的设计与低层或多层建筑的设计没有什么区别,但在竖向构件的设计上,高层建筑有两个控制性因素:首先,高层建筑需要更大的柱体、墙体和井筒;其次,侧向力所产生的倾覆力矩和剪力变形要大得多,必须进行谨慎的设计来保证安全。

高层建筑的竖向构件需要逐层传递累积的重力和荷载,因此需要具备承载大尺寸柱体或墙体的能力。此外,这些构件还需要将水平荷载(如风荷载和地震荷载)传递给基础。然而,

水平荷载的分布方式与竖向荷载不同,是非线性的,并且随着建筑高度的增加而迅速增加。例如,在其他条件相同的情况下,建筑底部受风荷载产生的倾覆力矩近似呈平方规律变化,而顶部的水平位移与高度的四次方成正比。地震荷载的影响更为显著。

对于低层和多层建筑的结构设计,只需要考虑恒荷载和部分动荷载,建筑物的柱、墙、楼梯或电梯等自然能够承受大部分水平力。主要需要考虑的问题是抗剪问题。对于现代“短”建筑物中的钢架系统支撑设计,如果没有特殊承载需求,就无需加大柱和梁的尺寸,只需增加规定尺寸的板(或甚至所有面板)即可轻松实现。

高层建筑的设计不仅要考虑抗剪的问题,还要解决抵抗力矩和变形的问题。为了应对高侧向荷载和变形,建筑中的柱、梁、墙和板等需要采用特殊的结构布置和特殊的材料。

在高层建筑中,每平方英尺建筑面积的结构材料用量要高于低层建筑。竖向构件,如墙、柱和井筒,需要在整个高度方向上加强以支撑重力荷载。抗侧向荷载的材料数量更加重要。

对于钢筋混凝土建筑,随着建筑物层数的增加,对材料的数量要求也增加。需要注意的是,混凝土材料质量的提高会导致建筑物自重的增加,而抵抗风荷载的能力所需的材料用量并不多。混凝土建筑自重的增加会增加抗震设计的难度,上层楼体的附加质量会使整体侧向荷载剧增。

以下是增强建筑物抵抗侧向荷载能力的基本原则: 1.增加抗弯构件的有效宽度,可以直接减小扭矩,减小变形。但必须保证加宽后的竖向承重构件非常有效地连接。

2.在设计构件时,尽可能有效地使它们加强相互间的作用力,例如采用弦杆和桁架体系、在墙的关键位置加置拉结钢筋、最优化钢架的刚度比等。

3.增加最有效的抗弯构件的截面材料,例如增加较低层柱以及连接大梁的翼缘截面。

4.使大部分竖向荷载直接作用于主要的抗弯构件,通过预压主要的抗倾覆构件,可以使建筑物在倾覆拉力的作用下保持稳定。

5.通过合理地放置实心墙体及在竖向构件中使用斜撑构件,可以有效地抵抗每层的局部剪力。

6.每层应加设充足的水平隔板,以使各种抗力构件更好地相互作用。

7.在中间转换层通过大型竖向和水平构件及重楼板创建连接成大框架,或者采用深梁体系。

高层建筑中,框架结构是一种常见的抗侧向荷载设计方案。框架结构由水平梁和竖向柱组成,它们共同承担建筑物的荷载。在框架结构中,XXX之间通过节点连接在一起,形成一个整体。这种结构能够在水平方向上承受荷载,并将荷载传递到地基,从而保证建筑物的稳定性。

框架结构的设计需要考虑节点的强度和刚度,以及梁和柱的尺寸和布置。在设计过程中,需要根据建筑物的高度和荷载条件选择合适的材料和截面形状。对于大型建筑物,常常采用混凝土或钢结构框架。

框架结构的优点是结构简单,施工方便,且能够适应不同的建筑形式。但是,框架结构也存在一些缺点,如节点容易产生应力集中,需要特别注意节点的设计和施工。此外,框架结构在承受侧向荷载时容易出现屈曲和扭转,需要采取相应的措施来加强结构的抗扭性能。

筒式结构

筒式结构是一种常见的高层建筑结构形式,它由一个或多个筒体组成,筒体可以是圆形、矩形或其他形状。筒体的外壳通常由混凝土或钢结构构成,内部可以设置电梯、楼梯间、设备竖井等功能空间。筒体的中心通常是一个核心筒,用于承担竖向荷载和抵抗侧向荷载。

筒式结构的优点是结构稳定,能够有效地抵抗侧向荷载和竖向荷载。筒体的形状和尺寸可以根据建筑物的需要进行调整,从而满足不同的设计要求。此外,筒式结构还可以提供良好的空间布局和功能分区。

然而,筒式结构也存在一些缺点。首先,筒体的建造需要大量的材料和施工成本较高。其次,在筒体内部设置功能空间时需要考虑结构的稳定性和空间利用效率。最后,筒式结构在抵抗地震和风荷载时需要特别注意,需要采取相应的措施来加强结构的抗震和抗风性能。

总之,不同的高层建筑结构形式都有其优缺点,设计师应根据实际情况和设计要求选择合适的结构形式,并采取相应的措施来加强结构的稳定性和安全性。

在建筑结构设计中,框架结构被广泛采用,用于抵抗竖向和水平荷载。无论是低层建筑还是高层建筑,框架结构都是一个重要且标准的型式。与剪力墙结构相比,框架结构更适合在建筑物的内部或者外围的墙体上开设矩形孔洞。同时,框架结构还能充分利用建筑物内在任何情况下都要采用的XXX的刚度,通过框架受弯来抵抗水平和竖向荷载,使得柱子的承载能力变得更大。

框架结构的柔性使得其具有更大的延性,因此地震荷载下不易发生事故。即使框架局部某处出现超应力时,其延性也能允许整个结构位移多一点,但即使在结构上承受比预期更大的力量也绝不会使建筑物崩溃。因此,框架结构常被视为最好的高层抗震结构型式。另一方面,设计得好的剪力墙结构也不可能倒塌。

对于混凝土框架结构,存在较大的分歧。如果混凝土框架按传统方式设计,不进行特殊的延性设计,那么它将很难承受

比设计标准值大很多倍的地震荷载的冲击。不过最新研究和实验表明,当混凝土中放入足够的钢箍和节点钢筋时,混凝土框架框架也能表现出很好的延性。新建筑规范对所谓延性混凝土框架有专门的规定。然而,现在这些规范往往要求在框架的某处增设过多的钢筋,这就造成潜在的阻塞和增加施工的难度。尽管如此,混凝土框架设计还是既实用又经济的。

当然,在建筑结构设计中,还可以将框架结构和剪力墙结构结合起来使用。例如,在建筑体系一个方向上使用框架,而在另一方向上可以使用剪力墙。这样可以更好地满足建筑物的结构设计需求。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top